未验证 提交 0ea2fb52 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #4615 from cuicheng01/dygraph

update tipc lite demo
......@@ -307,21 +307,10 @@ RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
return filter_boxes;
}
std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, std::string power_mode, int num_threads) {
std::shared_ptr<PaddlePredictor> loadModel(std::string model_file, int num_threads) {
MobileConfig config;
config.set_model_from_file(model_file);
if (power_mode == "LITE_POWER_HIGH"){
config.set_power_mode(LITE_POWER_HIGH);
} else {
if (power_mode == "LITE_POWER_LOW") {
config.set_power_mode(LITE_POWER_HIGH);
} else {
std::cerr << "Only support LITE_POWER_HIGH or LITE_POWER_HIGH." << std::endl;
exit(1);
}
}
config.set_threads(num_threads);
std::shared_ptr<PaddlePredictor> predictor =
......@@ -391,7 +380,7 @@ void check_params(int argc, char **argv) {
if (strcmp(argv[1], "det") == 0) {
if (argc < 9){
std::cerr << "[ERROR] usage:" << argv[0]
<< " det det_model num_threads batchsize power_mode img_dir det_config lite_benchmark_value" << std::endl;
<< " det det_model runtime_device num_threads batchsize img_dir det_config lite_benchmark_value" << std::endl;
exit(1);
}
}
......@@ -399,7 +388,7 @@ void check_params(int argc, char **argv) {
if (strcmp(argv[1], "rec") == 0) {
if (argc < 9){
std::cerr << "[ERROR] usage:" << argv[0]
<< " rec rec_model num_threads batchsize power_mode img_dir key_txt lite_benchmark_value" << std::endl;
<< " rec rec_model runtime_device num_threads batchsize img_dir key_txt lite_benchmark_value" << std::endl;
exit(1);
}
}
......@@ -407,7 +396,7 @@ void check_params(int argc, char **argv) {
if (strcmp(argv[1], "system") == 0) {
if (argc < 12){
std::cerr << "[ERROR] usage:" << argv[0]
<< " system det_model rec_model clas_model num_threads batchsize power_mode img_dir det_config key_txt lite_benchmark_value" << std::endl;
<< " system det_model rec_model clas_model runtime_device num_threads batchsize img_dir det_config key_txt lite_benchmark_value" << std::endl;
exit(1);
}
}
......@@ -417,15 +406,15 @@ void system(char **argv){
std::string det_model_file = argv[2];
std::string rec_model_file = argv[3];
std::string cls_model_file = argv[4];
std::string precision = argv[5];
std::string num_threads = argv[6];
std::string batchsize = argv[7];
std::string power_mode = argv[8];
std::string runtime_device = argv[5];
std::string precision = argv[6];
std::string num_threads = argv[7];
std::string batchsize = argv[8];
std::string img_dir = argv[9];
std::string det_config_path = argv[10];
std::string dict_path = argv[11];
if (strcmp(argv[5], "FP32") != 0 && strcmp(argv[5], "INT8") != 0) {
if (strcmp(argv[6], "FP32") != 0 && strcmp(argv[6], "INT8") != 0) {
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
......@@ -441,9 +430,9 @@ void system(char **argv){
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
charactor_dict.push_back(" ");
auto det_predictor = loadModel(det_model_file, power_mode, std::stoi(num_threads));
auto rec_predictor = loadModel(rec_model_file, power_mode, std::stoi(num_threads));
auto cls_predictor = loadModel(cls_model_file, power_mode, std::stoi(num_threads));
auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
auto cls_predictor = loadModel(cls_model_file, std::stoi(num_threads));
for (int i = 0; i < cv_all_img_names.size(); ++i) {
std::cout << "The predict img: " << cv_all_img_names[i] << std::endl;
......@@ -477,14 +466,14 @@ void system(char **argv){
void det(int argc, char **argv) {
std::string det_model_file = argv[2];
std::string precision = argv[3];
std::string num_threads = argv[4];
std::string batchsize = argv[5];
std::string power_mode = argv[6];
std::string runtime_device = argv[3];
std::string precision = argv[4];
std::string num_threads = argv[5];
std::string batchsize = argv[6];
std::string img_dir = argv[7];
std::string det_config_path = argv[8];
if (strcmp(argv[3], "FP32") != 0 && strcmp(argv[3], "INT8") != 0) {
if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0) {
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
......@@ -495,7 +484,7 @@ void det(int argc, char **argv) {
//// load config from txt file
auto Config = LoadConfigTxt(det_config_path);
auto det_predictor = loadModel(det_model_file, power_mode, std::stoi(num_threads));
auto det_predictor = loadModel(det_model_file, std::stoi(num_threads));
std::vector<double> time_info = {0, 0, 0};
for (int i = 0; i < cv_all_img_names.size(); ++i) {
......@@ -530,14 +519,11 @@ void det(int argc, char **argv) {
if (strcmp(argv[9], "True") == 0) {
AutoLogger autolog(det_model_file,
0,
0,
0,
runtime_device,
std::stoi(num_threads),
std::stoi(batchsize),
"dynamic",
precision,
power_mode,
time_info,
cv_all_img_names.size());
autolog.report();
......@@ -546,14 +532,14 @@ void det(int argc, char **argv) {
void rec(int argc, char **argv) {
std::string rec_model_file = argv[2];
std::string precision = argv[3];
std::string num_threads = argv[4];
std::string batchsize = argv[5];
std::string power_mode = argv[6];
std::string runtime_device = argv[3];
std::string precision = argv[4];
std::string num_threads = argv[5];
std::string batchsize = argv[6];
std::string img_dir = argv[7];
std::string dict_path = argv[8];
if (strcmp(argv[3], "FP32") != 0 && strcmp(argv[3], "INT8") != 0) {
if (strcmp(argv[4], "FP32") != 0 && strcmp(argv[4], "INT8") != 0) {
std::cerr << "Only support FP32 or INT8." << std::endl;
exit(1);
}
......@@ -565,7 +551,7 @@ void rec(int argc, char **argv) {
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
charactor_dict.push_back(" ");
auto rec_predictor = loadModel(rec_model_file, power_mode, std::stoi(num_threads));
auto rec_predictor = loadModel(rec_model_file, std::stoi(num_threads));
std::shared_ptr<PaddlePredictor> cls_predictor;
......@@ -603,14 +589,11 @@ void rec(int argc, char **argv) {
// TODO: support autolog
if (strcmp(argv[9], "True") == 0) {
AutoLogger autolog(rec_model_file,
0,
0,
0,
runtime_device,
std::stoi(num_threads),
std::stoi(batchsize),
"dynamic",
precision,
power_mode,
time_info,
cv_all_img_names.size());
autolog.report();
......
===========================lite_params===========================
inference:./ocr_db_crnn det
infer_model:ch_PP-OCRv2_det_infer|ch_PP-OCRv2_det_slim_quant_infer
runtime_device:ARM_CPU
--cpu_threads:1|4
--det_batch_size:1
--rec_batch_size:1
--system_batch_size:1
--image_dir:./test_data/icdar2015_lite/text_localization/ch4_test_images/
--config_dir:./config.txt
--rec_dict_dir:./ppocr_keys_v1.txt
--benchmark:True
test_tipc/docs/lite_auto_log.png

289.9 KB | W: | H:

test_tipc/docs/lite_auto_log.png

209.8 KB | W: | H:

test_tipc/docs/lite_auto_log.png
test_tipc/docs/lite_auto_log.png
test_tipc/docs/lite_auto_log.png
test_tipc/docs/lite_auto_log.png
  • 2-up
  • Swipe
  • Onion skin
test_tipc/docs/lite_log.png

775.5 KB | W: | H:

test_tipc/docs/lite_log.png

168.7 KB | W: | H:

test_tipc/docs/lite_log.png
test_tipc/docs/lite_log.png
test_tipc/docs/lite_log.png
test_tipc/docs/lite_log.png
  • 2-up
  • Swipe
  • Onion skin
# Lite预测功能测试
# Lite\_arm\_cpu\_cpp预测功能测试
Lite预测功能测试的主程序为`test_lite.sh`,可以测试基于Lite预测库的模型推理功能。
Lite\_arm\_cpu\_cpp预测功能测试的主程序为`test_lite_arm_cpu_cpp.sh`,可以在ARM CPU上基于Lite预测库测试模型的C++推理功能。
## 1. 测试结论汇总
目前Lite端的样本间支持以方式的组合:
**字段说明:**
- 输入设置:包括C++预测、python预测、java预测
- 模型类型:包括正常模型(FP32)和量化模型(FP16)
- 模型类型:包括正常模型(FP32)和量化模型(INT8)
- batch-size:包括1和4
- threads:包括1和4
- predictor数量:包括多predictor预测和单predictor预测
- 功耗模式:包括高性能模式(LITE_POWER_HIGH)和省电模式(LITE_POWER_LOW)
- 预测库来源:包括下载方式和编译方式,其中编译方式分为以下目标硬件:(1)ARM CPU;(2)Linux XPU;(3)OpenCL GPU;(4)Metal GPU
- 预测库来源:包括下载方式和编译方式
| 模型类型 | batch-size | predictor数量 | 功耗模式 | 预测库来源 | 支持语言 |
| :----: | :----: | :----: | :----: | :----: | :----: |
| 正常模型/量化模型 | 1 | 1 | 高性能模式/省电模式 | 下载方式 | C++预测 |
| 模型类型 | batch-size | threads | predictor数量 | 预测库来源 |
| :----: | :----: | :----: | :----: | :----: |
| 正常模型/量化模型 | 1 | 1/4 | 1 | 下载方式 |
## 2. 测试流程
......@@ -24,15 +23,15 @@ Lite预测功能测试的主程序为`test_lite.sh`,可以测试基于Lite预
### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,模型和数据会打包到test_lite.tar中,将test_lite.tar上传到手机上,解压后进`入test_lite`目录中,然后运行`test_lite.sh`进行测试,最终在`test_lite/output`目录下生成`lite_*.log`后缀的日志文件。
先运行`prepare_lite.sh`,运行后会在当前路径下生成`test_lite.tar`,其中包含了测试数据、测试模型和用于预测的可执行文件。将`test_lite.tar`上传到被测试的手机上,在手机的终端解压该文件,进入`test_lite`目录中,然后运行`test_lite_arm_cpu_cpp.sh`进行测试,最终在`test_lite/output`目录下生成`lite_*.log`后缀的日志文件。
```shell
# 数据和模型准备
bash test_tipc/prepare.sh ./test_tipc/configs/ppocr_det_mobile_params.txt "lite_infer"
bash test_tipc/prepare_lite.sh ./test_tipc/configs/ppocr_det_mobile/model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
# 手机端测试:
bash test_lite.sh ppocr_det_mobile_params.txt
bash test_lite_arm_cpu_cpp.sh model_linux_gpu_normal_normal_lite_cpp_arm_cpu.txt
```
......@@ -44,7 +43,7 @@ bash test_lite.sh ppocr_det_mobile_params.txt
运行成功时会输出:
```
Run successfully with command - ./ocr_db_crnn det ./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb INT8 4 1 LITE_POWER_LOW ./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg ./config.txt True > ./output/lite_ch_ppocr_mobile_v2.0_det_slim_opt.nb_precision_INT8_batchsize_1_threads_4_powermode_LITE_POWER_LOW_singleimg_True.log 2>&1!
Run successfully with command - ./ocr_db_crnn det ch_PP-OCRv2_det_infer_opt.nb ARM_CPU FP32 1 1 ./test_data/icdar2015_lite/text_localization/ch4_test_images/ ./config.txt True > ./output/lite_ch_PP-OCRv2_det_infer_opt.nb_runtime_device_ARM_CPU_precision_FP32_batchsize_1_threads_1.log 2>&1!
Run successfully with command xxx
...
```
......@@ -52,7 +51,7 @@ Run successfully with command xxx
运行失败时会输出:
```
Run failed with command - ./ocr_db_crnn det ./models/ch_ppocr_mobile_v2.0_det_slim_opt.nb INT8 4 1 LITE_POWER_LOW ./test_data/icdar2015_lite/text_localization/ch4_test_images/img_233.jpg ./config.txt True > ./output/lite_ch_ppocr_mobile_v2.0_det_slim_opt.nb_precision_INT8_batchsize_1_threads_4_powermode_LITE_POWER_LOW_singleimg_True.log 2>&1!
Run failed with command - ./ocr_db_crnn det ch_PP-OCRv2_det_infer_opt.nb ARM_CPU FP32 1 1 ./test_data/icdar2015_lite/text_localization/ch4_test_images/ ./config.txt True > ./output/lite_ch_PP-OCRv2_det_infer_opt.nb_runtime_device_ARM_CPU_precision_FP32_batchsize_1_threads_1.log 2>&1!
Run failed with command xxx
...
```
......
......@@ -3,7 +3,7 @@ FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# 'whole_infer', 'klquant_whole_infer',
# 'cpp_infer', 'serving_infer', 'lite_infer']
# 'cpp_infer', 'serving_infer']
MODE=$2
......@@ -34,7 +34,7 @@ trainer_list=$(func_parser_value "${lines[14]}")
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# 'whole_infer', 'klquant_whole_infer',
# 'cpp_infer', 'serving_infer', 'lite_infer']
# 'cpp_infer', 'serving_infer']
MODE=$2
if [ ${MODE} = "lite_train_lite_infer" ];then
......@@ -169,40 +169,6 @@ if [ ${MODE} = "serving_infer" ];then
cd ./inference && tar xf ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar && cd ../
fi
if [ ${MODE} = "lite_infer" ];then
# prepare lite nb model and test data
current_dir=${PWD}
wget -nc -P ./models https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_opt.nb
wget -nc -P ./models https://paddleocr.bj.bcebos.com/dygraph_v2.0/lite/ch_ppocr_mobile_v2.0_det_slim_opt.nb
wget -nc -P ./test_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
cd ./test_data && tar -xf icdar2015_lite.tar && rm icdar2015_lite.tar && cd ../
# prepare lite env
export http_proxy=http://172.19.57.45:3128
export https_proxy=http://172.19.57.45:3128
paddlelite_url=https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz
paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}')
paddlelite_file=${paddlelite_zipfile:0:66}
wget ${paddlelite_url}
tar -xf ${paddlelite_zipfile}
mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite
mv models test_data ${paddlelite_file}/demo/cxx/ocr/test_lite
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite
cp ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/
cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite
cp test_tipc/configs/ppocr_det_mobile_params.txt test_tipc/test_lite.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite
cd ${paddlelite_file}/demo/cxx/ocr/
git clone https://github.com/LDOUBLEV/AutoLog.git
unset http_proxy
unset https_proxy
make -j
sleep 1
make -j
cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so
tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir}
fi
if [ ${MODE} = "paddle2onnx_infer" ];then
# prepare serving env
python_name=$(func_parser_value "${lines[2]}")
......
#!/bin/bash
source ./test_tipc/common_func.sh
FILENAME=$1
dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
IFS=$'\n'
lite_model_list=$(func_parser_value "${lines[2]}")
# prepare lite .nb model
pip install paddlelite==2.9
current_dir=${PWD}
IFS="|"
model_path=./inference_models
for model in ${lite_model_list[*]}; do
inference_model_url=https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/${model}.tar
inference_model=${inference_model_url##*/}
wget -nc -P ${model_path} ${inference_model_url}
cd ${model_path} && tar -xf ${inference_model} && cd ../
model_dir=${model_path}/${inference_model%.*}
model_file=${model_dir}/inference.pdmodel
param_file=${model_dir}/inference.pdiparams
paddle_lite_opt --model_dir=${model_dir} --model_file=${model_file} --param_file=${param_file} --valid_targets=arm --optimize_out=${model_dir}_opt
done
# prepare test data
data_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
model_path=./inference_models
inference_model=${inference_model_url##*/}
data_file=${data_url##*/}
wget -nc -P ./inference_models ${inference_model_url}
wget -nc -P ./test_data ${data_url}
cd ./inference_models && tar -xf ${inference_model} && cd ../
cd ./test_data && tar -xf ${data_file} && rm ${data_file} && cd ../
# prepare lite env
paddlelite_url=https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.9/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz
paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}')
paddlelite_file=${paddlelite_zipfile:0:66}
wget ${paddlelite_url} && tar -xf ${paddlelite_zipfile}
mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite
cp -r ${model_path}/*_opt.nb test_data ${paddlelite_file}/demo/cxx/ocr/test_lite
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite
cp -r ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/
cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite
cp ${FILENAME} test_tipc/test_lite_arm_cpu_cpp.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite
cd ${paddlelite_file}/demo/cxx/ocr/
git clone https://github.com/cuicheng01/AutoLog.git
make -j
sleep 1
make -j
cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so
tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir}
rm -rf ${paddlelite_file}* && rm -rf ${model_path}
......@@ -80,7 +80,7 @@ test_tipc/
├── test_train_inference_python.sh # 测试python训练预测的主程序
├── test_inference_cpp.sh # 测试c++预测的主程序
├── test_serving.sh # 测试serving部署预测的主程序
├── test_lite.sh # 测试lite部署预测的主程序
├── test_lite_arm_cpu_cpp.sh # 测试lite在arm_cpu上部署的C++预测的主程序
├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
└── readme.md # 使用文档
```
......@@ -107,4 +107,4 @@ test_tipc/
[test_train_inference_python 使用](docs/test_train_inference_python.md)
[test_inference_cpp 使用](docs/test_inference_cpp.md)
[test_serving 使用](docs/test_serving.md)
[test_lite 使用](docs/test_lite.md)
[test_lite_arm_cpu_cpp 使用](docs/test_lite_arm_cpu_cpp.md)
......@@ -3,8 +3,7 @@ source ./common_func.sh
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
FILENAME=$1
dataline=$(awk 'NR==102, NR==111{print}' $FILENAME)
echo $dataline
dataline=$(cat $FILENAME)
# parser params
IFS=$'\n'
lines=(${dataline})
......@@ -12,13 +11,14 @@ lines=(${dataline})
# parser lite inference
lite_inference_cmd=$(func_parser_value "${lines[1]}")
lite_model_dir_list=$(func_parser_value "${lines[2]}")
lite_cpu_threads_list=$(func_parser_value "${lines[3]}")
lite_batch_size_list=$(func_parser_value "${lines[4]}")
lite_power_mode_list=$(func_parser_value "${lines[5]}")
lite_infer_img_dir_list=$(func_parser_value "${lines[6]}")
lite_config_dir=$(func_parser_value "${lines[7]}")
lite_rec_dict_dir=$(func_parser_value "${lines[8]}")
lite_benchmark_value=$(func_parser_value "${lines[9]}")
runtime_device=$(func_parser_value "${lines[3]}")
lite_cpu_threads_list=$(func_parser_value "${lines[4]}")
lite_batch_size_list=$(func_parser_value "${lines[5]}")
lite_infer_img_dir_list=$(func_parser_value "${lines[8]}")
lite_config_dir=$(func_parser_value "${lines[9]}")
lite_rec_dict_dir=$(func_parser_value "${lines[10]}")
lite_benchmark_value=$(func_parser_value "${lines[11]}")
LOG_PATH="./output"
mkdir -p ${LOG_PATH}
......@@ -37,25 +37,16 @@ function func_lite(){
else
precision="FP32"
fi
is_single_img=$(echo $_img_dir | grep -E ".jpg|.jpeg|.png|.JPEG|.JPG")
if [[ "$is_single_img" != "" ]]; then
single_img="True"
else
single_img="False"
fi
# lite inference
for num_threads in ${lite_cpu_threads_list[*]}; do
for power_mode in ${lite_power_mode_list[*]}; do
for batchsize in ${lite_batch_size_list[*]}; do
model_name=$(echo $lite_model | awk -F "/" '{print $NF}')
_save_log_path="${_log_path}/lite_${model_name}_precision_${precision}_batchsize_${batchsize}_threads_${num_threads}_powermode_${power_mode}_singleimg_${single_img}.log"
command="${_script} ${lite_model} ${precision} ${num_threads} ${batchsize} ${power_mode} ${_img_dir} ${_config} ${lite_benchmark_value} > ${_save_log_path} 2>&1"
_save_log_path="${_log_path}/lite_${_lite_model}_runtime_device_${runtime_device}_precision_${precision}_batchsize_${batchsize}_threads_${num_threads}.log"
command="${_script} ${_lite_model} ${runtime_device} ${precision} ${num_threads} ${batchsize} ${_img_dir} ${_config} ${lite_benchmark_value} > ${_save_log_path} 2>&1"
eval ${command}
status_check $? "${command}" "${status_log}"
done
done
done
}
......@@ -64,6 +55,6 @@ IFS="|"
for lite_model in ${lite_model_dir_list[*]}; do
#run lite inference
for img_dir in ${lite_infer_img_dir_list[*]}; do
func_lite "${lite_inference_cmd}" "${lite_model}" "${LOG_PATH}" "${img_dir}" "${lite_config_dir}"
func_lite "${lite_inference_cmd}" "${lite_model}_opt.nb" "${LOG_PATH}" "${img_dir}" "${lite_config_dir}"
done
done
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册