diff --git a/configs/det/det_r50_dcn_fce_ctw.yml b/configs/det/det_r50_vd_dcn_fce_ctw.yml similarity index 100% rename from configs/det/det_r50_dcn_fce_ctw.yml rename to configs/det/det_r50_vd_dcn_fce_ctw.yml diff --git a/doc/doc_ch/algorithm_overview.md b/doc/doc_ch/algorithm_overview.md index 4da949c2adb9b561c389e60cd98ef379ca66feea..a784067a001ee575adf72c258f8e96de6e615a7a 100755 --- a/doc/doc_ch/algorithm_overview.md +++ b/doc/doc_ch/algorithm_overview.md @@ -1,11 +1,11 @@ # 两阶段算法 -- [两阶段算法](#-----) - * [1. 算法介绍](#1) - + [1.1 文本检测算法](#11) - + [1.2 文本识别算法](#12) - * [2. 模型训练](#2) - * [3. 模型推理](#3) +- [两阶段算法](#两阶段算法) + - [1. 算法介绍](#1-算法介绍) + - [1.1 文本检测算法](#11-文本检测算法) + - [1.2 文本识别算法](#12-文本识别算法) + - [2. 模型训练](#2-模型训练) + - [3. 模型推理](#3-模型推理) @@ -43,8 +43,8 @@ PaddleOCR开源的文本检测算法列表: 在CTW1500文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| -| --- | --- | --- | --- | --- | --- | -|FCE|ResNet50_dcn|88.13%|82.60%|85.28%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| +| --- | --- | --- | --- | --- | --- | +|FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) diff --git a/ppocr/metrics/det_metric.py b/ppocr/metrics/det_metric.py index 184283c68212b2582689abc310e449ac7b26ed16..c9ec8dd2e9082d7fd00db1086a352a61f0239cb1 100644 --- a/ppocr/metrics/det_metric.py +++ b/ppocr/metrics/det_metric.py @@ -135,7 +135,7 @@ class DetFCEMetric(object): # metircs['{}_{}'.format(key, score_thr)] = value metirc_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format( metirc['precision'], metirc['recall'], metirc['hmean']) - metircs['\n thr {}'.format(score_thr)] = metirc_str + metircs['thr {}'.format(score_thr)] = metirc_str hmean = max(hmean, metirc['hmean']) metircs['hmean'] = hmean