diff --git a/test/infer.sh b/test/infer.sh deleted file mode 100644 index 5b2c7d30806c2832769582999915e2cb9e1f6066..0000000000000000000000000000000000000000 --- a/test/infer.sh +++ /dev/null @@ -1,173 +0,0 @@ -#!/bin/bash -FILENAME=$1 -dataline=$(cat ${FILENAME}) -# parser params -IFS=$'\n' -lines=(${dataline}) -function func_parser(){ - strs=$1 - IFS=": " - array=(${strs}) - tmp=${array[1]} - echo ${tmp} -} -IFS=$'\n' -# The training params -train_model_list=$(func_parser "${lines[0]}") -slim_trainer_list=$(func_parser "${lines[3]}") -python=$(func_parser "${lines[4]}") -# inference params -# inference=$(func_parser "${lines[5]}") -devices=$(func_parser "${lines[6]}") -use_mkldnn_list=$(func_parser "${lines[7]}") -cpu_threads_list=$(func_parser "${lines[8]}") -rec_batch_size_list=$(func_parser "${lines[9]}") -gpu_trt_list=$(func_parser "${lines[10]}") -gpu_precision_list=$(func_parser "${lines[11]}") - -infer_gpu_id=$(func_parser "${lines[12]}") -log_path=$(func_parser "${lines[13]}") -status_log="${log_path}/result.log" - -# install requirments -${python} -m pip install pynvml; -${python} -m pip install psutil; -${python} -m pip install GPUtil; - -paddle_info="$(${python} -c "import paddle;print(f'paddle_version:{paddle.__version__}');print(f'paddle_commit:{paddle.__git_commit__}')")" -echo -e "\033[33m $paddle_info \033[0m" | tee -a ${status_log} -cpu_model=`cat /proc/cpuinfo | grep "model name" | awk -F ':' '{print $2}' | sort | uniq` -echo -e "\033[33m cpu_info:$cpu_model \033[0m" | tee -a ${status_log} -ip=`ifconfig| grep -A 1 'eth0'|grep 'inet'|awk -F ':' '{print $2}'|awk '{print $1}'` -echo -e "\033[33m ip_info:$ip \033[0m" | tee -a ${status_log} - -function status_check(){ - last_status=$1 # the exit code - run_model=$2 - run_command=$3 - run_log=$4 - if [ $last_status -eq 0 ]; then - echo -e "\033[33m $run_model successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} - else - echo -e "\033[33m $case failed with command - ${run_command}! \033[0m" | tee -a ${run_log} - fi -} -IFS='|' -for train_model in ${train_model_list[*]}; do - if [ ${train_model} = "ocr_det" ];then - model_name="det" - yml_file="configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar - cd ./inference && tar xf ch_det_data_50.tar && cd ../ - img_dir="./inference/ch_det_data_50/all-sum-510" - data_dir=./inference/ch_det_data_50/ - data_label_file=[./inference/ch_det_data_50/test_gt_50.txt] - elif [ ${train_model} = "ocr_rec" ];then - model_name="rec" - yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_rec_data_200.tar - cd ./inference && tar xf ch_rec_data_200.tar && cd ../ - img_dir="./inference/ch_rec_data_200/" - fi - - # eval - for slim_trainer in ${slim_trainer_list[*]}; do - if [ ${slim_trainer} = "norm" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "pact" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_quant_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_quant_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "distill" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_distill_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_distill_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - elif [ ${slim_trainer} = "fpgm" ]; then - if [ ${model_name} = "det" ]; then - eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - else - eval_model_name="ch_ppocr_mobile_v2.0_rec_prune_train" - wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_prune_train.tar - cd ./inference && tar xf ${eval_model_name}.tar && cd ../ - fi - fi - - save_log_path="${log_path}/${eval_model_name}" - command="${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model='./inference/${eval_model_name}/best_accuracy' Global.save_model_dir=${save_log_path} Eval.dataset.data_dir=${data_dir} Eval.dataset.label_file_list=${data_label_file}" - ${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model=./inference/${eval_model_name}/best_accuracy Global.save_model_dir=${save_log_path} Eval.dataset.data_dir=${data_dir} Eval.dataset.label_file_list=${data_label_file} - status_check $? "${trainer}" "${command}" "${status_log}" - - command="${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model="${eval_model_name}/best_accuracy" Global.save_inference_dir=${log_path}/${eval_model_name}_infer Global.save_model_dir=${save_log_path}" - ${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model="./inference/${eval_model_name}/best_accuracy" Global.save_inference_dir="${log_path}/${eval_model_name}_infer" Global.save_model_dir=${save_log_path} - status_check $? "${trainer}" "${command}" "${status_log}" - - if [ $? -eq 0 ]; then - echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${save_log}/train.log - else - cat ${save_log}/train.log - echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${save_log}/train.log - fi - if [ "${model_name}" = "det" ]; then - export rec_batch_size_list=( "1" ) - inference="tools/infer/predict_det.py" - det_model_dir="${log_path}/${eval_model_name}_infer" - rec_model_dir="" - elif [ "${model_name}" = "rec" ]; then - inference="tools/infer/predict_rec.py" - rec_model_dir="${log_path}/${eval_model_name}_infer" - det_model_dir="" - fi - # inference - for device in ${devices[*]}; do - if [ ${device} = "cpu" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - for threads in ${cpu_threads_list[*]}; do - for rec_batch_size in ${rec_batch_size_list[*]}; do - save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log" - command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" - ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${trainer}" "${command}" "${status_log}" - done - done - done - else - # env="export CUDA_VISIBLE_DEVICES=${infer_gpu_id}" - for use_trt in ${gpu_trt_list[*]}; do - for precision in ${gpu_precision_list[*]}; do - if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then - continue - fi - for rec_batch_size in ${rec_batch_size_list[*]}; do - save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log" - command="${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" - ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${trainer}" "${command}" "${status_log}" - done - done - done - fi - done - done -done diff --git a/test/ocr_det_params.txt b/test/ocr_det_params.txt new file mode 100644 index 0000000000000000000000000000000000000000..9752ba435992b817e0349a671004e226a17ad026 --- /dev/null +++ b/test/ocr_det_params.txt @@ -0,0 +1,35 @@ +model_name:ocr_det +python:python3.7 +gpu_list:-1|0|0,1 +Global.auto_cast:False|True +Global.epoch_num:10 +Global.save_model_dir:./output/ +Global.save_inference_dir:./output/ +Train.loader.batch_size_per_card: +Global.use_gpu +Global.pretrained_model + +trainer:norm|pact|fpgm +norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained +quant_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy +fpgm_train:null +distill_train:null + +eval:tools/eval.py -c configs/det/det_mv3_db.yml -o + +norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o +quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o +fpgm_export:deploy/slim/prune/export_prune_model.py +distill_export:null + +inference:tools/infer/predict_det.py +--use_gpu:True|False +--enable_mkldnn:True|False +--cpu_threads:1|6 +--rec_batch_num:1 +--use_tensorrt:True|False +--precision:fp32|fp16|int8 +--det_model_dir +--image_dir +--save_log_path + diff --git a/test/paddleocr_ci_params.txt b/test/paddleocr_ci_params.txt deleted file mode 100644 index 4cd035ea5625f2d8365b176168db9386adbb35e6..0000000000000000000000000000000000000000 --- a/test/paddleocr_ci_params.txt +++ /dev/null @@ -1,15 +0,0 @@ -train_model_list: ocr_det -gpu_list: -1|0|0,1 -auto_cast_list: False|True -trainer_list: norm|pact|fpgm -python: python3.7 - -inference: python -devices: cpu|gpu -use_mkldnn_list: True|False -cpu_threads_list: 1|6 -rec_batch_size_list: 1|6 -gpu_trt_list: True|False -gpu_precision_list: fp32|fp16|int8 -infer_gpu_id: 0 -log_path: ./output diff --git a/test/prepare.sh b/test/prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..65ea28c1435d643341e100fc2db310cce8aa3ab3 --- /dev/null +++ b/test/prepare.sh @@ -0,0 +1,138 @@ +#!/bin/bash +FILENAME=$1 +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] +MODE=$2 + +dataline=$(cat ${FILENAME}) + +# parser params +IFS=$'\n' +lines=(${dataline}) +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[1]} + echo ${tmp} +} +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[0]}") +train_model_list=$(func_parser_value "${lines[0]}") +slim_trainer_list=$(func_parser_value "${lines[12]}") + +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +MODE=$2 +# prepare pretrained weights and dataset +wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams +wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar +cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ + +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar + cd ./train_data/ && tar xf icdar2015_lite.tar + ln -s ./icdar2015_lite ./icdar2015 + cd ../ + epoch=10 + eval_batch_step=10 +elif [ ${MODE} = "whole_train_infer" ];then + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar + cd ./train_data/ && tar xf icdar2015.tar && cd ../ + epoch=500 + eval_batch_step=200 +elif [ ${MODE} = "whole_infer" ];then + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar + cd ./train_data/ && tar xf icdar2015_infer.tar + ln -s ./icdar2015_infer ./icdar2015 + cd ../ + epoch=10 + eval_batch_step=10 +else + rm -rf ./train_data/icdar2015 + wget -nc -P ./train_data https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar + if [ ${model_name} = "ocr_det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi +fi + + +IFS='|' +for train_model in ${train_model_list[*]}; do + if [ ${train_model} = "ocr_det" ];then + model_name="det" + yml_file="configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar + cd ./inference && tar xf ch_det_data_50.tar && cd ../ + img_dir="./inference/ch_det_data_50/all-sum-510" + data_dir=./inference/ch_det_data_50/ + data_label_file=[./inference/ch_det_data_50/test_gt_50.txt] + elif [ ${train_model} = "ocr_rec" ];then + model_name="rec" + yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_rec_data_200.tar + cd ./inference && tar xf ch_rec_data_200.tar && cd ../ + img_dir="./inference/ch_rec_data_200/" + fi + + # eval + for slim_trainer in ${slim_trainer_list[*]}; do + if [ ${slim_trainer} = "norm" ]; then + if [ ${model_name} = "det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi + elif [ ${slim_trainer} = "pact" ]; then + if [ ${model_name} = "det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_quant_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_quant_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_quant_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi + elif [ ${slim_trainer} = "distill" ]; then + if [ ${model_name} = "det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_distill_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_distill_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_distill_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi + elif [ ${slim_trainer} = "fpgm" ]; then + if [ ${model_name} = "det" ]; then + eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + else + eval_model_name="ch_ppocr_mobile_v2.0_rec_prune_train" + wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_prune_train.tar + cd ./inference && tar xf ${eval_model_name}.tar && cd ../ + fi + fi + done +done diff --git a/test/test.sh b/test/test.sh index 5bb48ac5201d10e203902ef791b81386e50f9629..b95b8ead2b4c0fe5fde32aef5289db037a67d06a 100644 --- a/test/test.sh +++ b/test/test.sh @@ -1,203 +1,221 @@ -#!/bin/bash -# Usage: -# bash test/test.sh ./test/paddleocr_ci_params.txt 'lite_train_infer' - +#!/bin/bash FILENAME=$1 - -# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] MODE=$2 -# prepare pretrained weights and dataset -wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams -wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar -cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ - -if [ ${MODE} = "lite_train_infer" ];then - # pretrain lite train data - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar - cd ./train_data/ && tar xf icdar2015_lite.tar - ln -s ./icdar2015_lite ./icdar2015 - cd ../ - epoch=10 - eval_batch_step=10 -elif [ ${MODE} = "whole_train_infer" ];then - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar - cd ./train_data/ && tar xf icdar2015.tar && cd ../ - epoch=500 - eval_batch_step=200 -else - rm -rf ./train_data/icdar2015 - wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar - cd ./train_data/ && tar xf icdar2015_infer.tar - ln -s ./icdar2015_infer ./icdar2015 - cd ../ - epoch=10 - eval_batch_step=10 -fi - -img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" - dataline=$(cat ${FILENAME}) + # parser params IFS=$'\n' lines=(${dataline}) -function func_parser(){ +function func_parser_key(){ + strs=$1 + IFS=":" + array=(${strs}) + tmp=${array[0]} + echo ${tmp} +} +function func_parser_value(){ strs=$1 - IFS=": " + IFS=":" array=(${strs}) tmp=${array[1]} echo ${tmp} } -IFS=$'\n' -# The training params -train_model_list=$(func_parser "${lines[0]}") -gpu_list=$(func_parser "${lines[1]}") -auto_cast_list=$(func_parser "${lines[2]}") -slim_trainer_list=$(func_parser "${lines[3]}") -python=$(func_parser "${lines[4]}") -# inference params -inference=$(func_parser "${lines[5]}") -devices=$(func_parser "${lines[6]}") -use_mkldnn_list=$(func_parser "${lines[7]}") -cpu_threads_list=$(func_parser "${lines[8]}") -rec_batch_size_list=$(func_parser "${lines[9]}") -gpu_trt_list=$(func_parser "${lines[10]}") -gpu_precision_list=$(func_parser "${lines[11]}") - -log_path=$(func_parser "${lines[13]}") -status_log="${log_path}/result.log" - -# install requirments -${python} -m pip install pynvml; -${python} -m pip install psutil; -${python} -m pip install GPUtil; -${python} -m pip install paddlesim==2.0.0 - -paddle_info="$(${python} -c "import paddle;print(f'paddle_version:{paddle.__version__}');print(f'paddle_commit:{paddle.__git_commit__}')")" -echo -e "\033[33m $paddle_info \033[0m" | tee -a ${status_log} -cpu_model=`cat /proc/cpuinfo | grep "model name" | awk -F ':' '{print $2}' | sort | uniq` -echo -e "\033[33m cpu_info:$cpu_model \033[0m" | tee -a ${status_log} -ip=`ifconfig| grep -A 1 'eth0'|grep 'inet'|awk -F ':' '{print $2}'|awk '{print $1}'` -echo -e "\033[33m ip_info:$ip \033[0m" | tee -a ${status_log} - function status_check(){ last_status=$1 # the exit code - run_model=$2 - run_command=$3 - run_log=$4 + run_command=$2 + run_log=$3 if [ $last_status -eq 0 ]; then - echo -e "\033[33m $run_model successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} + echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} else - echo -e "\033[33m $case failed with command - ${run_command}! \033[0m" | tee -a ${run_log} + echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} fi } -IFS="|" -for train_model in ${train_model_list[*]}; do - if [ ${train_model} = "ocr_det" ];then - model_name="det" - yml_file="configs/det/det_mv3_db.yml" - elif [ ${train_model} = "ocr_rec" ];then - model_name="rec" - yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml" - else - model_name="det" - yml_file="configs/det/det_mv3_db.yml" - fi - IFS="|" - for gpu in ${gpu_list[*]}; do - use_gpu=True - if [ ${gpu} = "-1" ];then - use_gpu=False - env="" - elif [ ${#gpu} -le 1 ];then - env="CUDA_VISIBLE_DEVICES=${gpu}" +IFS=$'\n' +# The training params +model_name=$(func_parser_value "${lines[0]}") +python=$(func_parser_value "${lines[1]}") +gpu_list=$(func_parser_value "${lines[2]}") +autocast_list=$(func_parser_value "${lines[3]}") +autocast_key=$(func_parser_key "${lines[3]}") +epoch_key=$(func_parser_key "${lines[4]}") +save_model_key=$(func_parser_key "${lines[5]}") +save_infer_key=$(func_parser_key "${lines[6]}") +train_batch_key=$(func_parser_key "${lines[7]}") +train_use_gpu_key=$(func_parser_key "${lines[8]}") +pretrain_model_key=$(func_parser_key "${lines[9]}") + +trainer_list=$(func_parser_value "${lines[10]}") +norm_trainer=$(func_parser_value "${lines[11]}") +pact_trainer=$(func_parser_value "${lines[12]}") +fpgm_trainer=$(func_parser_value "${lines[13]}") +distill_trainer=$(func_parser_value "${lines[14]}") + +eval_py=$(func_parser_value "${lines[15]}") +norm_export=$(func_parser_value "${lines[16]}") +pact_export=$(func_parser_value "${lines[17]}") +fpgm_export=$(func_parser_value "${lines[18]}") +distill_export=$(func_parser_value "${lines[19]}") + +inference_py=$(func_parser_value "${lines[20]}") +use_gpu_key=$(func_parser_key "${lines[21]}") +use_gpu_list=$(func_parser_value "${lines[21]}") +use_mkldnn_key=$(func_parser_key "${lines[22]}") +use_mkldnn_list=$(func_parser_value "${lines[22]}") +cpu_threads_key=$(func_parser_key "${lines[23]}") +cpu_threads_list=$(func_parser_value "${lines[23]}") +batch_size_key=$(func_parser_key "${lines[24]}") +batch_size_list=$(func_parser_value "${lines[24]}") +use_trt_key=$(func_parser_key "${lines[25]}") +use_trt_list=$(func_parser_value "${lines[25]}") +precision_key=$(func_parser_key "${lines[26]}") +precision_list=$(func_parser_value "${lines[26]}") +model_dir_key=$(func_parser_key "${lines[27]}") +image_dir_key=$(func_parser_key "${lines[28]}") +save_log_key=$(func_parser_key "${lines[29]}") + +LOG_PATH="./test/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results.log" + +if [ ${MODE} = "lite_train_infer" ]; then + export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" + export epoch_num=10 +elif [ ${MODE} = "whole_infer" ]; then + export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" + export epoch_num=10 +elif [ ${MODE} = "whole_train_infer" ]; then + export infer_img_dir="./train_data/icdar2015/text_localization/ch4_test_images/" + export epoch_num=300 +else + export infer_img_dir="./inference/ch_det_data_50/all-sum-510" + export infer_model_dir="./inference/ch_ppocr_mobile_v2.0_det_train/best_accuracy" +fi + + +function func_inference(){ + IFS='|' + _python=$1 + _script=$2 + _model_dir=$3 + _log_path=$4 + _img_dir=$5 + + # inference + for use_gpu in ${use_gpu_list[*]}; do + if [ ${use_gpu} = "False" ]; then + for use_mkldnn in ${use_mkldnn_list[*]}; do + for threads in ${cpu_threads_list[*]}; do + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}" + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path}" + eval $command + status_check $? "${command}" "${status_log}" + done + done + done else - IFS="," - array=(${gpu}) - env="CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - fi - for auto_cast in ${auto_cast_list[*]}; do - for slim_trainer in ${slim_trainer_list[*]}; do - if [ ${slim_trainer} = "norm" ]; then - trainer="tools/train.py" - export_model="tools/export_model.py" - pretrain="./pretrain_models/MobileNetV3_large_x0_5_pretrained" - elif [ ${slim_trainer} = "pact" ]; then - trainer="deploy/slim/quantization/quant.py" - export_model="deploy/slim/quantization/export_model.py" - pretrain="./pretrain_models/det_mv3_db_v2.0_train/best_accuracy" - elif [ ${slim_trainer} = "fpgm" ]; then - trainer="deploy/slim/prune/sensitivity_anal.py" - export_model="deploy/slim/prune/export_prune_model.py" - pretrain="./pretrain_models/det_mv3_db_v2.0_train/best_accuracy" - wget -nc -P https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/sen.pickle - elif [ ${slim_trainer} = "distill" ]; then - trainer="deploy/slim/distill/train_dml.py" - export_model="deploy/slim/distill/export_distill_model.py" - pretrain="" - else - trainer="tools/train.py" - export_model="tools/export_model.py" - pretrain="./pretrain_models/MobileNetV3_large_x0_5_pretrained" - fi - save_log="${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}" - if [ ${#gpu} -le 2 ];then - command="${python} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" - ${python} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 - else - command="${python} -m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" - ${python} -m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 - fi - status_check $? "${trainer}" "${command}" "${status_log}" - - command="${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}_infer/ Global.save_model_dir=${save_log}" - ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}_infer/ Global.save_model_dir=${save_log} - status_check $? "${trainer}" "${command}" "${status_log}" - - if [ "${model_name}" = "det" ]; then - export rec_batch_size_list=( "1" ) - inference="tools/infer/predict_det.py" - det_model_dir=${save_log}_infer - rec_model_dir="" - elif [ "${model_name}" = "rec" ]; then - inference="tools/infer/predict_rec.py" - rec_model_dir=${save_log}_infer - det_model_dir="" - fi - # inference - for device in ${devices[*]}; do - if [ ${device} = "cpu" ]; then - for use_mkldnn in ${use_mkldnn_list[*]}; do - for threads in ${cpu_threads_list[*]}; do - for rec_batch_size in ${rec_batch_size_list[*]}; do - save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log" - command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" - ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${inference}" "${command}" "${status_log}" - done - done - done - else - for use_trt in ${gpu_trt_list[*]}; do - for precision in ${gpu_precision_list[*]}; do - if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then - continue - fi - for rec_batch_size in ${rec_batch_size_list[*]}; do - save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log" - command="${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}" - ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path} - status_check $? "${inference}" "${command}" "${status_log}" - done - done - done + for use_trt in ${use_trt_list[*]}; do + for precision in ${precision_list[*]}; do + if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then + continue fi + for batch_size in ${batch_size_list[*]}; do + _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}" + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${model_dir_key}=${_model_dir} ${batch_size_key}=${batch_size} ${image_dir_key}=${_img_dir} ${save_log_key}=${_save_log_path}" + eval $command + status_check $? "${command}" "${status_log}" + done done done + fi + done +} + +if [ ${MODE} != "infer" ]; then + +IFS="|" +for gpu in ${gpu_list[*]}; do + use_gpu=True + if [ ${gpu} = "-1" ];then + use_gpu=False + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + if [ ${trainer} = "pact" ]; then + run_train=${pact_trainer} + run_export=${pact_export} + elif [ ${trainer} = "fpgm" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "distill" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + if [ ${run_export} = "null" ]; then + continue + fi + + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + if [ ${#gpu} -le 2 ];then # epoch_num #TODO + cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log} " + elif [ ${#gpu} -le 15 ];then + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" + else + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${autocast_key}=${autocast} ${epoch_key}=${epoch_num} ${save_model_key}=${save_log}" + fi + # run train + eval $cmd + status_check $? "${cmd}" "${status_log}" + + # run eval + eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + + # run export model + save_infer_path="${save_log}" + export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/latest ${save_infer_key}=${save_infer_path}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" done done done + +else + save_infer_path="${LOG_PATH}/${MODE}" + run_export=${norm_export} + export_cmd="${python} ${run_export} ${save_model_key}=${save_infer_path} ${pretrain_model_key}=${infer_model_dir} ${save_infer_key}=${save_infer_path}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${infer_img_dir}" +fi