recognition_en.md 25.3 KB
Newer Older
1
# Text Recognition
K
Khanh Tran 已提交
2

3
- [1. Data Preparation](#DATA_PREPARATION)
A
andyjpaddle 已提交
4 5 6 7 8
  * [1.1 Costom Dataset](#Costom_Dataset)
  * [1.2 Dataset Download](#Dataset_download)
  * [1.3 Dictionary](#Dictionary)  
  * [1.4 Add Space Category](#Add_space_category)
  * [1.5 Data Augmentation](#Data_Augmentation)
9
- [2. Training](#TRAINING)
A
andyjpaddle 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
  * [2.4 Mixed Precision Training](#24-amp-training)
  * [2.5 Distributed Training](#25-distributed-training)
  * [2.6 Training with knowledge distillation](#kd)
  * [2.7 Multi-language Training](#Multi_language)
  * [2.8 Training on other platform(Windows/macOS/Linux DCU)](#28)
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#5-faq)
W
WenmuZhou 已提交
23 24

<a name="DATA_PREPARATION"></a>
25
## 1. Data Preparation
K
Khanh Tran 已提交
26 27


W
WenmuZhou 已提交
28
PaddleOCR supports two data formats:
T
tink2123 已提交
29 30
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
K
Khanh Tran 已提交
31 32 33 34 35 36

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
W
WenmuZhou 已提交
37
# linux and mac os
38
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
W
WenmuZhou 已提交
39 40
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
K
Khanh Tran 已提交
41 42
```

W
WenmuZhou 已提交
43
<a name="Costom_Dataset"></a>
44
### 1.1 Costom Dataset
K
Khanh Tran 已提交
45 46 47 48 49

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

W
WenmuZhou 已提交
50
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
K
Khanh Tran 已提交
51 52 53 54 55 56

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

W
WenmuZhou 已提交
57 58
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
W
WenmuZhou 已提交
59
...
K
Khanh Tran 已提交
60 61 62 63 64 65
```

The final training set should have the following file structure:

```
|-train_data
W
WenmuZhou 已提交
66
  |-rec
W
WenmuZhou 已提交
67 68 69 70 71 72
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
K
Khanh Tran 已提交
73 74 75 76 77 78 79 80
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
W
WenmuZhou 已提交
81
  |-rec
K
Khanh Tran 已提交
82 83 84 85 86 87 88 89
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
W
WenmuZhou 已提交
90 91

<a name="Dataset_download"></a>
92
### 1.2 Dataset Download
W
WenmuZhou 已提交
93

T
tink2123 已提交
94
- ICDAR2015
W
WenmuZhou 已提交
95

T
tink2123 已提交
96 97
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
W
WenmuZhou 已提交
98

99 100
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

W
WenmuZhou 已提交
101 102 103 104 105 106 107 108 109
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

T
tink2123 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


W
WenmuZhou 已提交
130
<a name="Dictionary"></a>
T
tink2123 已提交
131
### 1.3 Dictionary
K
Khanh Tran 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

W
WenmuZhou 已提交
148 149
PaddleOCR has built-in dictionaries, which can be used on demand.

K
Khanh Tran 已提交
150 151
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

W
WenmuZhou 已提交
152 153 154 155
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

156
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
W
WenmuZhou 已提交
157

T
tink2123 已提交
158
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
W
WenmuZhou 已提交
159

T
tink2123 已提交
160 161
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

T
tink2123 已提交
162
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
W
WenmuZhou 已提交
163

X
xiaoting 已提交
164

W
WenmuZhou 已提交
165
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
166
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
K
Khanh Tran 已提交
167 168


T
tink2123 已提交
169
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
K
Khanh Tran 已提交
170

T
tink2123 已提交
171 172 173 174
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

W
WenmuZhou 已提交
175
<a name="Add_space_category"></a>
176
### 1.4 Add Space Category
T
tink2123 已提交
177

178
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
T
tink2123 已提交
179

T
tink2123 已提交
180
<a name="Data_Augmentation"></a>
A
andyjpaddle 已提交
181
### 1.5 Data Augmentation
T
tink2123 已提交
182 183 184 185 186 187 188

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

A
andyjpaddle 已提交
189 190
<a name="TRAINING"></a>
## 2.Training
T
tink2123 已提交
191

K
Khanh Tran 已提交
192 193
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

A
andyjpaddle 已提交
194 195 196
<a name="21-start-training"></a>
### 2.1 Start Training

K
Khanh Tran 已提交
197 198 199 200 201
First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
202
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
203 204
# Decompress model parameters
cd pretrain_models
T
tink2123 已提交
205
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
206 207 208 209 210
```

Start training:

```
T
tink2123 已提交
211
# GPU training Support single card and multi-card training
T
tink2123 已提交
212
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
T
tink2123 已提交
213 214 215 216

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
217
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
K
Khanh Tran 已提交
218
```
T
tink2123 已提交
219 220


K
Khanh Tran 已提交
221 222 223 224 225 226 227 228 229
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
230 231
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
232
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
W
WenmuZhou 已提交
233
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
234 235 236 237 238
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
L
LDOUBLEV 已提交
239 240
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
T
tink2123 已提交
241
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
T
Topdu 已提交
242
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
A
andyjpaddle 已提交
243
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
K
Khanh Tran 已提交
244 245


W
WenmuZhou 已提交
246
For training Chinese data, it is recommended to use
247
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
K
Khanh Tran 已提交
248
co
249
Take `rec_chinese_lite_train_v2.0.yml` as an example:
K
Khanh Tran 已提交
250 251 252
```
Global:
  ...
253 254
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
K
Khanh Tran 已提交
255 256
  # Modify character type
  ...
257
  # Whether to recognize spaces
258
  use_space_char: True
K
Khanh Tran 已提交
259

260 261 262 263

Optimizer:
  ...
  # Add learning rate decay strategy
264 265 266 267 268 269 270 271 272
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
M
MissPenguin 已提交
273
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
M
MissPenguin 已提交
293
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
K
Khanh Tran 已提交
309 310 311
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

A
andyjpaddle 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
<a name="22-load-trained-model-and-continue-training"></a>
### 2.2 Load Trained Model and Continue Training

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

For example:
```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.

<a name="23-training-with-new-backbone"></a>
### 2.3 Training with New Backbone

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

<a name="24-amp-training"></a>
### 2.4 Mixed Precision Training

If you want to speed up your training further, you can use [Auto Mixed Precision Training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), taking a single machine and a single gpu as an example, the commands are as follows:

```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
 ```

<a name="25-distributed-training"></a>
### 2.5 Distributed Training

During multi-machine multi-gpu training, use the `--ips` parameter to set the used machine IP address, and the `--gpus` parameter to set the used GPU ID:

```bash
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train
```

**Note:** When using multi-machine and multi-gpu training, you need to replace the ips value in the above command with the address of your machine, and the machines need to be able to ping each other. In addition, training needs to be launched separately on multiple machines. The command to view the ip address of the machine is `ifconfig`.

<a name="kd"></a>
### 2.6 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

W
WenmuZhou 已提交
403
<a name="Multi_language"></a>
A
andyjpaddle 已提交
404
### 2.7 Multi-language Training
T
tink2123 已提交
405 406 407

Currently, the multi-language algorithms supported by PaddleOCR are:

T
tink2123 已提交
408 409 410 411 412 413 414 415 416 417 418 419
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
T
tink2123 已提交
420

T
tink2123 已提交
421
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
W
WenmuZhou 已提交
422 423 424 425 426 427 428 429 430


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
431
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
W
WenmuZhou 已提交
432 433
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
434
  # Whether to recognize spaces
435
  use_space_char: True
436

W
WenmuZhou 已提交
437
...
438 439 440

Train:
  dataset:
M
MissPenguin 已提交
441
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
442 443 444 445 446 447 448 449 450
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
M
MissPenguin 已提交
451
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
452 453 454 455 456 457
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
W
WenmuZhou 已提交
458
```
K
Khanh Tran 已提交
459

A
andyjpaddle 已提交
460 461
<a name="28"></a>
### 2.8 Training on other platform(Windows/macOS/Linux DCU
462

A
andyjpaddle 已提交
463 464 465 466
- Windows GPU/CPU
The Windows platform is slightly different from the Linux platform:
Windows platform only supports `single gpu` training and inference, specify GPU for training `set CUDA_VISIBLE_DEVICES=0`
On the Windows platform, DataLoader only supports single-process mode, so you need to set `num_workers` to 0;
467

A
andyjpaddle 已提交
468 469
- macOS
GPU mode is not supported, you need to set `use_gpu` to False in the configuration file, and the rest of the training evaluation prediction commands are exactly the same as Linux GPU.
470

A
andyjpaddle 已提交
471 472
- Linux DCU
Running on a DCU device requires setting the environment variable `export HIP_VISIBLE_DEVICES=0,1,2,3`, and the rest of the training and evaluation prediction commands are exactly the same as the Linux GPU.
473

A
andyjpaddle 已提交
474 475
<a name="3-evaluation-and-test"></a>
## 3. Evaluation and Test
K
Khanh Tran 已提交
476

A
andyjpaddle 已提交
477 478 479 480
<a name="31-evaluation"></a>
### 3.1 Evaluation

The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
K
Khanh Tran 已提交
481 482 483

```
# GPU evaluation, Global.checkpoints is the weight to be tested
W
WenmuZhou 已提交
484
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
K
Khanh Tran 已提交
485 486
```

A
andyjpaddle 已提交
487 488
<a name="32-test"></a>
### 3.2 Test
K
Khanh Tran 已提交
489 490 491 492


Using the model trained by paddleocr, you can quickly get prediction through the following script.

T
tink2123 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
K
Khanh Tran 已提交
514 515 516

```
# Predict English results
W
WenmuZhou 已提交
517
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
K
Khanh Tran 已提交
518 519
```

T
tink2123 已提交
520

K
Khanh Tran 已提交
521 522
Input image:

523
![](../imgs_words/en/word_1.png)
K
Khanh Tran 已提交
524 525 526 527 528

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
T
tink2123 已提交
529
        result: ('joint', 0.9998967)
K
Khanh Tran 已提交
530 531
```

532
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
K
Khanh Tran 已提交
533 534 535

```
# Predict Chinese results
W
WenmuZhou 已提交
536
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
K
Khanh Tran 已提交
537 538 539 540
```

Input image:

541
![](../imgs_words/ch/word_1.jpg)
K
Khanh Tran 已提交
542 543 544 545 546

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
T
tink2123 已提交
547
        result: ('韩国小馆', 0.997218)
K
Khanh Tran 已提交
548
```
549

A
andyjpaddle 已提交
550 551 552 553 554 555
<a name="4-inference"></a>
## 4. Inference

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
556

A
andyjpaddle 已提交
557
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
A
andyjpaddle 已提交
575
inference/rec_crnn/
576 577 578 579 580 581 582
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

文幕地方's avatar
文幕地方 已提交
583
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
584 585

  ```
文幕地方's avatar
文幕地方 已提交
586
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
587
  ```
A
andyjpaddle 已提交
588 589 590 591 592 593 594

<a name="5-faq"></a>
## 5. FAQ

Q1: After the training model is transferred to the inference model, the prediction effect is inconsistent?

**A**: There are many such problems, and the problems are mostly caused by inconsistent preprocessing and postprocessing parameters when the trained model predicts and the preprocessing and postprocessing parameters when the inference model predicts. You can compare whether there are differences in preprocessing, postprocessing, and prediction in the configuration files used for training.