recognition_en.md 15.5 KB
Newer Older
1
# Text Recognition
K
Khanh Tran 已提交
2

文幕地方's avatar
文幕地方 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
- [Text Recognition](#text-recognition)
  - [1. Data Preparation](#1-data-preparation)
    - [1.1 DataSet Preparation](#11-dataset-preparation)
    - [1.2 Dictionary](#12-dictionary)
    - [1.4 Add Space Category](#14-add-space-category)
  - [2.Training](#2training)
    - [2.1 Data Augmentation](#21-data-augmentation)
    - [2.2 General Training](#22-general-training)
    - [2.3 Multi-language Training](#23-multi-language-training)
    - [2.4 Training with Knowledge Distillation](#24-training-with-knowledge-distillation)
  - [3. Evalution](#3-evalution)
  - [4. Prediction](#4-prediction)
  - [5. Convert to Inference Model](#5-convert-to-inference-model)
W
WenmuZhou 已提交
16 17

<a name="DATA_PREPARATION"></a>
18
## 1. Data Preparation
K
Khanh Tran 已提交
19

文幕地方's avatar
文幕地方 已提交
20
### 1.1 DataSet Preparation
K
Khanh Tran 已提交
21

文幕地方's avatar
文幕地方 已提交
22
To prepare datasets, refer to [ocr_datasets](./dataset/ocr_datasets.md) .
W
WenmuZhou 已提交
23

24 25
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

W
WenmuZhou 已提交
26
<a name="Dictionary"></a>
文幕地方's avatar
文幕地方 已提交
27
### 1.2 Dictionary
K
Khanh Tran 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

W
WenmuZhou 已提交
44 45
PaddleOCR has built-in dictionaries, which can be used on demand.

K
Khanh Tran 已提交
46 47
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

W
WenmuZhou 已提交
48 49 50 51
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

52
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
W
WenmuZhou 已提交
53

T
tink2123 已提交
54
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
W
WenmuZhou 已提交
55

T
tink2123 已提交
56 57
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

T
tink2123 已提交
58
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
W
WenmuZhou 已提交
59

X
xiaoting 已提交
60

W
WenmuZhou 已提交
61
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
62
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
K
Khanh Tran 已提交
63 64


T
tink2123 已提交
65
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
K
Khanh Tran 已提交
66

T
tink2123 已提交
67 68 69 70
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

W
WenmuZhou 已提交
71
<a name="Add_space_category"></a>
72
### 1.4 Add Space Category
T
tink2123 已提交
73

74
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
T
tink2123 已提交
75

W
WenmuZhou 已提交
76
<a name="TRAINING"></a>
77
## 2.Training
K
Khanh Tran 已提交
78

T
tink2123 已提交
79
<a name="Data_Augmentation"></a>
T
tink2123 已提交
80
### 2.1 Data Augmentation
T
tink2123 已提交
81 82 83 84 85 86 87 88

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

<a name="Training"></a>
T
tink2123 已提交
89
### 2.2 General Training
T
tink2123 已提交
90

K
Khanh Tran 已提交
91 92 93 94 95 96 97
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
T
tink2123 已提交
98
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
99 100
# Decompress model parameters
cd pretrain_models
T
tink2123 已提交
101
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
K
Khanh Tran 已提交
102 103 104 105 106
```

Start training:

```
T
tink2123 已提交
107
# GPU training Support single card and multi-card training
T
tink2123 已提交
108
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
T
tink2123 已提交
109 110 111 112

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
113
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
K
Khanh Tran 已提交
114
```
T
tink2123 已提交
115 116


K
Khanh Tran 已提交
117 118 119 120 121 122 123 124 125
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
126 127
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
128
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
W
WenmuZhou 已提交
129
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
K
Khanh Tran 已提交
130 131 132 133 134
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
L
LDOUBLEV 已提交
135 136
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
T
tink2123 已提交
137
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
T
Topdu 已提交
138
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
A
andyjpaddle 已提交
139
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
K
Khanh Tran 已提交
140 141


W
WenmuZhou 已提交
142
For training Chinese data, it is recommended to use
143
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
K
Khanh Tran 已提交
144
co
145
Take `rec_chinese_lite_train_v2.0.yml` as an example:
K
Khanh Tran 已提交
146 147 148
```
Global:
  ...
149 150
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
K
Khanh Tran 已提交
151 152
  # Modify character type
  ...
153
  # Whether to recognize spaces
154
  use_space_char: True
K
Khanh Tran 已提交
155

156 157 158 159

Optimizer:
  ...
  # Add learning rate decay strategy
160 161 162 163 164 165 166 167 168
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
M
MissPenguin 已提交
169
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
M
MissPenguin 已提交
189
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
K
Khanh Tran 已提交
205 206 207
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

W
WenmuZhou 已提交
208
<a name="Multi_language"></a>
T
tink2123 已提交
209
### 2.3 Multi-language Training
T
tink2123 已提交
210 211 212

Currently, the multi-language algorithms supported by PaddleOCR are:

T
tink2123 已提交
213 214 215 216 217 218 219 220 221 222 223 224
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
T
tink2123 已提交
225

T
tink2123 已提交
226
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
W
WenmuZhou 已提交
227 228 229 230 231 232 233 234 235


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
236
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
W
WenmuZhou 已提交
237 238
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
239
  # Whether to recognize spaces
240
  use_space_char: True
241

W
WenmuZhou 已提交
242
...
243 244 245

Train:
  dataset:
M
MissPenguin 已提交
246
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
247 248 249 250 251 252 253 254 255
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
M
MissPenguin 已提交
256
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
257 258 259 260 261 262
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
W
WenmuZhou 已提交
263
```
K
Khanh Tran 已提交
264

265 266 267 268 269 270
<a name="kd"></a>

### 2.4 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

W
WenmuZhou 已提交
271
<a name="EVALUATION"></a>
272

273
## 3. Evalution
K
Khanh Tran 已提交
274

W
WenmuZhou 已提交
275
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
K
Khanh Tran 已提交
276 277 278

```
# GPU evaluation, Global.checkpoints is the weight to be tested
W
WenmuZhou 已提交
279
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
K
Khanh Tran 已提交
280 281
```

W
WenmuZhou 已提交
282
<a name="PREDICTION"></a>
283
## 4. Prediction
K
Khanh Tran 已提交
284 285 286 287


Using the model trained by paddleocr, you can quickly get prediction through the following script.

T
tink2123 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
K
Khanh Tran 已提交
309 310 311

```
# Predict English results
W
WenmuZhou 已提交
312
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
K
Khanh Tran 已提交
313 314
```

T
tink2123 已提交
315

K
Khanh Tran 已提交
316 317
Input image:

318
![](../imgs_words/en/word_1.png)
K
Khanh Tran 已提交
319 320 321 322 323

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
T
tink2123 已提交
324
        result: ('joint', 0.9998967)
K
Khanh Tran 已提交
325 326
```

327
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
K
Khanh Tran 已提交
328 329 330

```
# Predict Chinese results
W
WenmuZhou 已提交
331
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
K
Khanh Tran 已提交
332 333 334 335
```

Input image:

336
![](../imgs_words/ch/word_1.jpg)
K
Khanh Tran 已提交
337 338 339 340 341

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
T
tink2123 已提交
342
        result: ('韩国小馆', 0.997218)
K
Khanh Tran 已提交
343
```
344 345 346

<a name="Inference"></a>

347
## 5. Convert to Inference Model
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
inference/det_db/
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

文幕地方's avatar
文幕地方 已提交
373
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
374 375

  ```
文幕地方's avatar
文幕地方 已提交
376
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
377
  ```