ppocr_introduction.md 13.6 KB
Newer Older
M
update  
MissPenguin 已提交
1
[English](../doc_en/ppocr_introduction_en.md) | 简体中文
M
MissPenguin 已提交
2

M
update  
MissPenguin 已提交
3
# PP-OCR
M
MissPenguin 已提交
4

M
update  
MissPenguin 已提交
5 6
- [1. 简介](#1)
- [2. 特性](#2)
M
update  
MissPenguin 已提交
7 8 9 10 11 12
- [3. benchmark](#3)
- [4. 效果展示](#4)
- [5. 使用教程](#5)
    - [5.1 快速体验](#51)
    - [5.2 模型训练、压缩、推理部署](#52)
- [6. 模型库](#6)
M
update  
MissPenguin 已提交
13 14 15 16 17 18 19


<a name="1"></a>
## 1. 简介

PP-OCR是PaddleOCR自研的实用的超轻量OCR系统。在实现[前沿算法](algorithm.md)的基础上,考虑精度与速度的平衡,进行**模型瘦身****深度优化**,使其尽可能满足产业落地需求。

M
MissPenguin 已提交
20 21
#### PP-OCR

M
update  
MissPenguin 已提交
22 23 24
PP-OCR是一个两阶段的OCR系统,其中文本检测算法选用[DB](algorithm_det_db.md),文本识别算法选用[CRNN](algorithm_rec_crnn.md),并在检测和识别模块之间添加[文本方向分类器](angle_class.md),以应对不同方向的文本识别。

PP-OCR系统pipeline如下:
M
MissPenguin 已提交
25 26 27 28 29

<div align="center">
    <img src="../ppocrv2_framework.jpg" width="800">
</div>

M
update  
MissPenguin 已提交
30 31 32

PP-OCR系统在持续迭代优化,目前已发布PP-OCR和PP-OCRv2两个版本:

M
MissPenguin 已提交
33 34 35 36 37
PP-OCR从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941

#### PP-OCRv2

PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和[Enhanced CTC loss](./doc/doc_ch/enhanced_ctc_loss.md)损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)
M
update  
MissPenguin 已提交
38

M
MissPenguin 已提交
39
#### PP-OCRv3
M
update  
MissPenguin 已提交
40

L
add  
LDOUBLEV 已提交
41 42 43 44
PP-OCRv3在PP-OCRv2的基础上进一步升级。
PP-OCRv3文本检测从网络结构、蒸馏训练策略两个方向做了进一步优化:
- 网络结构改进:提出两种改进后的FPN网络结构,RSEFPN,LKPAN,分别从channel attention、更大感受野的角度优化FPN中的特征,优化FPN提取的特征。
- 蒸馏训练策略:首先,以resnet50作为backbone,改进后的LKPAN网络结构作为FPN,使用DML自蒸馏策略得到精度更高的teacher模型;然后,student模型FPN部分采用RSEFPN,采用PPOCRV2提出的CML蒸馏方法蒸馏,在训练过程中,动态调整CML蒸馏teacher loss的占比。
L
LDOUBLEV 已提交
45

L
LDOUBLEV 已提交
46
|序号|策略|模型大小|hmean|Intel Gold 6148CPU+mkldnn预测耗时|
L
LDOUBLEV 已提交
47 48 49 50
|-|-|-|-|-|
|0|ppocr_mobile|3M|81.3|117ms|
|1|PPOCRV2|3M|83.3|117ms|
|2|teacher DML|124M|86.0|-|
L
LDOUBLEV 已提交
51 52
|3|1 + 2 + RESFPN|3.6M|85.4|124ms|
|4|1 + 2 + LKPAN|4.6M|86.0|156ms|
L
LDOUBLEV 已提交
53

M
update  
MissPenguin 已提交
54

T
tink2123 已提交
55 56
- PP-OCRv3 文本识别

T
tink2123 已提交
57
[SVTR](https://arxiv.org/abs/2205.00159) 证明了强大的单视觉模型(无需序列模型)即可高效准确完成文本识别任务,在中英文数据上均有优秀的表现。经过实验验证,SVTR_Tiny在自建的 [中文数据集上](https://arxiv.org/abs/2109.03144) ,识别精度可以提升10.7%,网络结构如下所示:
T
tink2123 已提交
58

X
xiaoting 已提交
59
<img src="../ppocr_v3/svtr_tiny.jpg" width=800>
T
tink2123 已提交
60

T
tink2123 已提交
61
由于 MKLDNN 加速库支持的模型结构有限,SVTR 在CPU+MKLDNN上相比PP-OCRv2慢了10倍。
T
tink2123 已提交
62

T
tink2123 已提交
63
PP-OCRv3 期望在提升模型精度的同时,不带来额外的推理耗时。通过分析发现,SVTR_Tiny结构的主要耗时模块为Mixing Block,因此我们对 SVTR_Tiny 的结构进行了一系列优化,详细速度数据请参考下方消融实验表格:
T
tink2123 已提交
64

T
tink2123 已提交
65
1. 将SVTR网络前半部分替换为PP-LCNet的前三个stage,保留4个 Global Mixing Block ,精度为76%,加速69%,网络结构如下所示:
X
xiaoting 已提交
66
<img src="../ppocr_v3/svtr_g4.png" width=800>
T
tink2123 已提交
67
2. 将4个 Global Attenntion Block 减小到2个,精度为72.9%,加速69%,网络结构如下所示:
X
xiaoting 已提交
68
<img src="../ppocr_v3/svtr_g2.png" width=800>
T
tink2123 已提交
69
3. 实验发现 Global Attention 的预测速度与输入其特征的shape有关,因此后移Global Mixing Block的位置到池化层之后,精度下降为71.9%,速度超越 CNN-base 的PP-OCRv2 22%,网络结构如下所示:
X
xiaoting 已提交
70
<img src="../ppocr_v3/ppocr_v3.png" width=800>
T
tink2123 已提交
71

T
tink2123 已提交
72
为了提升模型精度同时不引入额外推理成本,PP-OCRv3参考GTC策略,使用Attention监督CTC训练,预测时完全去除Attention模块,在推理阶段不增加任何耗时, 精度提升3.8%,训练流程如下所示:
X
xiaoting 已提交
73 74
<img src="../ppocr_v3/GTC.png" width=800>

T
tink2123 已提交
75
在训练策略方面,PP-OCRv3参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了文本方向任务,训练了适用于文本识别的预训练模型,加速模型收敛过程,精度提升了0.6%; 使用UDML蒸馏策略,进一步提升精度1.5%,训练流程所示:
X
xiaoting 已提交
76 77

<img src="../ppocr_v3/SSL.png" width="300"> <img src="../ppocr_v3/UDML.png" width="500">
T
tink2123 已提交
78 79


T
tink2123 已提交
80 81 82
数据增强方面:

1. 基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,设计了 RecConAug 数据增强方法,增强数据多样性,精度提升0.5%,增强可视化效果如下所示:
X
xiaoting 已提交
83
<img src="../ppocr_v3/recconaug.png" width=800>
T
tink2123 已提交
84

T
tink2123 已提交
85
2. 使用训练好的 SVTR_large 预测 120W 的 lsvt 无标注数据,取出其中得分大于0.95的数据,共得到81W识别数据加入到PP-OCRv3的训练数据中,精度提升1%。
T
tink2123 已提交
86 87 88

总体来讲PP-OCRv3识别从网络结构、训练策略、数据增强三个方向做了进一步优化:

T
tink2123 已提交
89
- 网络结构上:考虑[SVTR](https://arxiv.org/abs/2205.00159) 在中英文效果上的优越性,采用SVTR_Tiny作为base,选取Global Mixing Block和卷积组合提取特征,并将Global Mixing Block位置后移进行加速; 参考 [GTC](https://arxiv.org/pdf/2002.01276.pdf) 策略,使用注意力机制模块指导CTC训练,定位和识别字符,提升不规则文本的识别精度。
T
tink2123 已提交
90 91
- 训练策略上:参考 [SSL](https://github.com/ku21fan/STR-Fewer-Labels) 设计了方向分类前序任务,获取更优预训练模型,加速模型收敛过程,提升精度; 使用UDML蒸馏策略、监督attention、ctc两个分支得到更优模型。
- 数据增强上:基于 [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf) 中的ConAug方法,改进得到 RecConAug 数据增广方法,支持随机结合任意多张图片,提升训练数据的上下文信息丰富度,增强模型鲁棒性;使用 SVTR_large 预测无标签数据,向训练集中补充81w高质量真实数据。
T
tink2123 已提交
92

T
tink2123 已提交
93
基于上述策略,PP-OCRv3识别模型相比PP-OCRv2,在速度可比的情况下,精度进一步提升4.5%。 体消融实验如下所示:
T
tink2123 已提交
94

T
tink2123 已提交
95
实验细节:
96

T
tink2123 已提交
97 98 99
| id | 策略 |  模型大小 | 精度 | 速度(cpu + mkldnn)|
|-----|-----|--------|----| --- |
| 01 | PP-OCRv2 | 8M | 69.3% | 8.54ms |
T
tink2123 已提交
100 101 102
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
| 03 | LCNet_SVTR_G4 | 9.2M | 76% | 30ms |
| 04 | LCNet_SVTR_G2 | 13M | 72.98% | 9.37ms |
T
tink2123 已提交
103 104 105 106 107 108 109 110 111
| 05 | PP-OCRv3 | 12M | 71.9% | 6.6ms |
| 06 | + large input_shape | 12M | 73.98% | 7.6ms |
| 06 | + GTC | 12M | 75.8% | 7.6ms |
| 07 | + RecConAug | 12M | 76.3% | 7.6ms |
| 08 | + SSL pretrain | 12M | 76.9% | 7.6ms |
| 09 | + UDML | 12M | 78.4% | 7.6ms |
| 10 | + unlabeled data | 12M | 79.4% | 7.6ms |

注: 测试速度时,输入图片尺寸均为(3,32,320)
112

M
update  
MissPenguin 已提交
113 114 115 116 117 118 119 120 121 122
<a name="2"></a>
## 2. 特性

- 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
- 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用PP-OCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
- 支持中英文数字组合识别、竖排文本识别、长文本识别
- 支持多语言识别:韩语、日语、德语、法语等约80种语言

<a name="3"></a>
M
update  
MissPenguin 已提交
123 124 125 126 127 128 129
## 3. benchmark

关于PP-OCR系列模型之间的性能对比,请查看[benchmark](./benchmark.md)文档。


<a name="4"></a>
## 4. 效果展示 [more](./visualization.md)
M
update  
MissPenguin 已提交
130 131 132 133 134 135 136 137 138 139 140 141

<details open>
<summary>PP-OCRv2 中文模型</summary>

<div align="center">
      <img src="../imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
      <img src="../imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
</div>
<div align="center">
    <img src="../imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
    <img src="../imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
</div>
L
LDOUBLEV 已提交
142

M
update  
MissPenguin 已提交
143 144 145 146 147
</details>


<details open>
<summary>PP-OCRv2 英文模型</summary>
L
LDOUBLEV 已提交
148

M
update  
MissPenguin 已提交
149 150 151 152 153 154 155 156 157
<div align="center">
    <img src="../imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
</div>

</details>


<details open>
<summary>PP-OCRv2 其他语言模型</summary>
L
LDOUBLEV 已提交
158

M
update  
MissPenguin 已提交
159 160 161 162
<div align="center">
    <img src="../imgs_results/french_0.jpg" width="800">
    <img src="../imgs_results/korean.jpg" width="800">
</div>
L
LDOUBLEV 已提交
163

M
update  
MissPenguin 已提交
164 165
</details>

L
LDOUBLEV 已提交
166

M
update  
MissPenguin 已提交
167 168
<a name="5"></a>
## 5. 使用教程
M
update  
MissPenguin 已提交
169

M
update  
MissPenguin 已提交
170 171
<a name="51"></a>
### 5.1 快速体验
M
update  
MissPenguin 已提交
172 173 174 175 176

- 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端demo体验:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)
- 一行命令快速使用:[快速开始(中英文/多语言)](./doc/doc_ch/quickstart.md)

M
update  
MissPenguin 已提交
177 178
<a name="52"></a>
### 5.2 模型训练、压缩、推理部署
M
update  
MissPenguin 已提交
179 180 181

更多教程,包括模型训练、模型压缩、推理部署等,请参考[文档教程](../../README_ch.md#文档教程)

M
update  
MissPenguin 已提交
182 183
<a name="6"></a>
## 6. 模型库
M
update  
MissPenguin 已提交
184 185 186 187 188

PP-OCR中英文模型列表如下:

| 模型简介                              | 模型名称                | 推荐场景        | 检测模型                                                     | 方向分类器                                                   | 识别模型                                                     |
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
littletomatodonkey's avatar
littletomatodonkey 已提交
189
| 中英文超轻量PP-OCRv3模型(16.2M)     | ch_PP-OCRv3_xx          | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
190
| 英文超轻量PP-OCRv3模型(13.4M)     | en_PP-OCRv3_xx          | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
littletomatodonkey's avatar
littletomatodonkey 已提交
191
| 中英文超轻量PP-OCRv2模型(13.0M)     | ch_PP-OCRv2_xx          | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
M
update  
MissPenguin 已提交
192 193 194
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端        | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |

L
LDOUBLEV 已提交
195
更多模型下载(包括英文数字模型、多语言模型、Paddle-Lite模型等),可以参考[PP-OCR 系列模型下载](./models_list.md)