__init__.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14

D
dyning 已提交
15
import copy
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17
import importlib

18 19 20
from paddle.jit import to_static
from paddle.static import InputSpec

littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from .base_model import BaseModel
from .distillation_model import DistillationModel
D
dyning 已提交
23

24
__all__ = ["build_model", "apply_to_static"]
D
dyning 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26

D
dyning 已提交
27 28
def build_model(config):
    config = copy.deepcopy(config)
littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35
    if not "name" in config:
        arch = BaseModel(config)
    else:
        name = config.pop("name")
        mod = importlib.import_module(__name__)
        arch = getattr(mod, name)(config)
    return arch
36 37 38 39 40 41 42


def apply_to_static(model, config, logger):
    if config["Global"].get("to_static", False) is not True:
        return model
    assert "image_shape" in config[
        "Global"], "image_shape must be assigned for static training mode..."
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    supported_list = ["DB", "SVTR"]
    if config["Architecture"]["algorithm"] in ["Distillation"]:
        algo = list(config["Architecture"]["Models"].values())[0]["algorithm"]
    else:
        algo = config["Architecture"]["algorithm"]
    assert algo in supported_list, f"algorithms that supports static training must in in {supported_list} but got {algo}"

    specs = [
        InputSpec(
            [None] + config["Global"]["image_shape"], dtype='float32')
    ]

    if algo == "SVTR":
        specs.append([
            InputSpec(
                [None, config["Global"]["max_text_length"]],
                dtype='int64'), InputSpec(
                    [None, config["Global"]["max_text_length"]], dtype='int64'),
            InputSpec(
                [None], dtype='int64'), InputSpec(
                    [None], dtype='float64')
        ])
65 66 67 68

    model = to_static(model, input_spec=specs)
    logger.info("Successfully to apply @to_static with specs: {}".format(specs))
    return model