vqa_utils.py 14.6 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
import cv2
import random
import numpy as np
import imghdr
from copy import deepcopy

import paddle

from PIL import Image, ImageDraw, ImageFont


Z
zhoujun 已提交
28 29 30 31 32 33
def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


littletomatodonkey's avatar
littletomatodonkey 已提交
34
def get_bio_label_maps(label_map_path):
文幕地方's avatar
文幕地方 已提交
35
    with open(label_map_path, "r", encoding='utf-8') as fin:
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        lines = fin.readlines()
    lines = [line.strip() for line in lines]
    if "O" not in lines:
        lines.insert(0, "O")
    labels = []
    for line in lines:
        if line == "O":
            labels.append("O")
        else:
            labels.append("B-" + line)
            labels.append("I-" + line)
    label2id_map = {label: idx for idx, label in enumerate(labels)}
    id2label_map = {idx: label for idx, label in enumerate(labels)}
    return label2id_map, id2label_map


def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
    if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            file_path = os.path.join(img_file, single_file)
            if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
                imgs_lists.append(file_path)
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    imgs_lists = sorted(imgs_lists)
    return imgs_lists


def draw_ser_results(image,
                     ocr_results,
文幕地方's avatar
add re  
文幕地方 已提交
73
                     font_path="../../doc/fonts/simfang.ttf",
littletomatodonkey's avatar
littletomatodonkey 已提交
74
                     font_size=18):
文幕地方's avatar
add re  
文幕地方 已提交
75
    np.random.seed(2021)
littletomatodonkey's avatar
littletomatodonkey 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    color = (np.random.permutation(range(255)),
             np.random.permutation(range(255)),
             np.random.permutation(range(255)))
    color_map = {
        idx: (color[0][idx], color[1][idx], color[2][idx])
        for idx in range(1, 255)
    }
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    img_new = image.copy()
    draw = ImageDraw.Draw(img_new)

    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    for ocr_info in ocr_results:
        if ocr_info["pred_id"] not in color_map:
            continue
        color = color_map[ocr_info["pred_id"]]
        text = "{}: {}".format(ocr_info["pred"], ocr_info["text"])
文幕地方's avatar
add re  
文幕地方 已提交
94 95

        draw_box_txt(ocr_info["bbox"], text, draw, font, font_size, color)
littletomatodonkey's avatar
littletomatodonkey 已提交
96 97 98 99 100

    img_new = Image.blend(image, img_new, 0.5)
    return np.array(img_new)


文幕地方's avatar
add re  
文幕地方 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
def draw_box_txt(bbox, text, draw, font, font_size, color):
    # draw ocr results outline
    bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]))
    draw.rectangle(bbox, fill=color)

    # draw ocr results
    start_y = max(0, bbox[0][1] - font_size)
    tw = font.getsize(text)[0]
    draw.rectangle(
        [(bbox[0][0] + 1, start_y), (bbox[0][0] + tw + 1, start_y + font_size)],
        fill=(0, 0, 255))
    draw.text((bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font)


def draw_re_results(image,
                    result,
                    font_path="../../doc/fonts/simfang.ttf",
                    font_size=18):
    np.random.seed(0)
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    img_new = image.copy()
    draw = ImageDraw.Draw(img_new)

    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    color_head = (0, 0, 255)
    color_tail = (255, 0, 0)
    color_line = (0, 255, 0)

    for ocr_info_head, ocr_info_tail in result:
        draw_box_txt(ocr_info_head["bbox"], ocr_info_head["text"], draw, font,
                     font_size, color_head)
        draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["text"], draw, font,
                     font_size, color_tail)

        center_head = (
            (ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
            (ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2)
        center_tail = (
            (ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
            (ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2)

        draw.line([center_head, center_tail], fill=color_line, width=5)

    img_new = Image.blend(image, img_new, 0.5)
    return np.array(img_new)
littletomatodonkey's avatar
littletomatodonkey 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


# pad sentences
def pad_sentences(tokenizer,
                  encoded_inputs,
                  max_seq_len=512,
                  pad_to_max_seq_len=True,
                  return_attention_mask=True,
                  return_token_type_ids=True,
                  return_overflowing_tokens=False,
                  return_special_tokens_mask=False):
    # Padding with larger size, reshape is carried out
    max_seq_len = (
        len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len

    needs_to_be_padded = pad_to_max_seq_len and \
文幕地方's avatar
add re  
文幕地方 已提交
163
        max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
littletomatodonkey's avatar
littletomatodonkey 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    if needs_to_be_padded:
        difference = max_seq_len - len(encoded_inputs["input_ids"])
        if tokenizer.padding_side == 'right':
            if return_attention_mask:
                encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                    "input_ids"]) + [0] * difference
            if return_token_type_ids:
                encoded_inputs["token_type_ids"] = (
                    encoded_inputs["token_type_ids"] +
                    [tokenizer.pad_token_type_id] * difference)
            if return_special_tokens_mask:
                encoded_inputs["special_tokens_mask"] = encoded_inputs[
                    "special_tokens_mask"] + [1] * difference
            encoded_inputs["input_ids"] = encoded_inputs[
                "input_ids"] + [tokenizer.pad_token_id] * difference
            encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
                                                               ] * difference
    else:
        if return_attention_mask:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                "input_ids"])

    return encoded_inputs


def split_page(encoded_inputs, max_seq_len=512):
    """
    truncate is often used in training process
    """
    for key in encoded_inputs:
文幕地方's avatar
add re  
文幕地方 已提交
195 196 197
        if key == 'entities':
            encoded_inputs[key] = [encoded_inputs[key]]
            continue
littletomatodonkey's avatar
littletomatodonkey 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
        encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
        if encoded_inputs[key].ndim <= 1:  # for input_ids, att_mask and so on
            encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
        else:  # for bbox
            encoded_inputs[key] = encoded_inputs[key].reshape(
                [-1, max_seq_len, 4])
    return encoded_inputs


def preprocess(
        tokenizer,
        ori_img,
        ocr_info,
        img_size=(224, 224),
        pad_token_label_id=-100,
        max_seq_len=512,
        add_special_ids=False,
        return_attention_mask=True, ):
    ocr_info = deepcopy(ocr_info)
    height = ori_img.shape[0]
    width = ori_img.shape[1]

文幕地方's avatar
文幕地方 已提交
220
    img = cv2.resize(ori_img, img_size).transpose([2, 0, 1]).astype(np.float32)
littletomatodonkey's avatar
littletomatodonkey 已提交
221 222 223 224 225 226

    segment_offset_id = []
    words_list = []
    bbox_list = []
    input_ids_list = []
    token_type_ids_list = []
文幕地方's avatar
add re  
文幕地方 已提交
227
    entities = []
littletomatodonkey's avatar
littletomatodonkey 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    for info in ocr_info:
        # x1, y1, x2, y2
        bbox = info["bbox"]
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)

        text = info["text"]
        encode_res = tokenizer.encode(
            text, pad_to_max_seq_len=False, return_attention_mask=True)

        if not add_special_ids:
            # TODO: use tok.all_special_ids to remove
            encode_res["input_ids"] = encode_res["input_ids"][1:-1]
            encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
            encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]

文幕地方's avatar
add re  
文幕地方 已提交
247 248 249 250 251 252 253
        # for re
        entities.append({
            "start": len(input_ids_list),
            "end": len(input_ids_list) + len(encode_res["input_ids"]),
            "label": "O",
        })

littletomatodonkey's avatar
littletomatodonkey 已提交
254 255 256 257 258 259 260 261 262 263 264
        input_ids_list.extend(encode_res["input_ids"])
        token_type_ids_list.extend(encode_res["token_type_ids"])
        bbox_list.extend([bbox] * len(encode_res["input_ids"]))
        words_list.append(text)
        segment_offset_id.append(len(input_ids_list))

    encoded_inputs = {
        "input_ids": input_ids_list,
        "token_type_ids": token_type_ids_list,
        "bbox": bbox_list,
        "attention_mask": [1] * len(input_ids_list),
文幕地方's avatar
add re  
文幕地方 已提交
265
        "entities": entities
littletomatodonkey's avatar
littletomatodonkey 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    }

    encoded_inputs = pad_sentences(
        tokenizer,
        encoded_inputs,
        max_seq_len=max_seq_len,
        return_attention_mask=return_attention_mask)

    encoded_inputs = split_page(encoded_inputs)

    fake_bs = encoded_inputs["input_ids"].shape[0]

    encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
        [fake_bs] + list(img.shape))

    encoded_inputs["segment_offset_id"] = segment_offset_id

    return encoded_inputs


def postprocess(attention_mask, preds, id2label_map):
    if isinstance(preds, paddle.Tensor):
        preds = preds.numpy()
    preds = np.argmax(preds, axis=2)

    preds_list = [[] for _ in range(preds.shape[0])]

    # keep batch info
    for i in range(preds.shape[0]):
        for j in range(preds.shape[1]):
            if attention_mask[i][j] == 1:
                preds_list[i].append(id2label_map[preds[i][j]])

    return preds_list


def merge_preds_list_with_ocr_info(ocr_info, segment_offset_id, preds_list,
                                   label2id_map_for_draw):
    # must ensure the preds_list is generated from the same image
    preds = [p for pred in preds_list for p in pred]

    id2label_map = dict()
    for key in label2id_map_for_draw:
        val = label2id_map_for_draw[key]
        if key == "O":
            id2label_map[val] = key
        if key.startswith("B-") or key.startswith("I-"):
            id2label_map[val] = key[2:]
        else:
            id2label_map[val] = key

    for idx in range(len(segment_offset_id)):
        if idx == 0:
            start_id = 0
        else:
            start_id = segment_offset_id[idx - 1]

        end_id = segment_offset_id[idx]

        curr_pred = preds[start_id:end_id]
        curr_pred = [label2id_map_for_draw[p] for p in curr_pred]

        if len(curr_pred) <= 0:
            pred_id = 0
        else:
            counts = np.bincount(curr_pred)
            pred_id = np.argmax(counts)
        ocr_info[idx]["pred_id"] = int(pred_id)
        ocr_info[idx]["pred"] = id2label_map[int(pred_id)]
    return ocr_info


文幕地方's avatar
add re  
文幕地方 已提交
338 339 340 341 342 343 344 345 346
def print_arguments(args, logger=None):
    print_func = logger.info if logger is not None else print
    """print arguments"""
    print_func('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print_func('%s: %s' % (arg, value))
    print_func('------------------------------------------------')


littletomatodonkey's avatar
littletomatodonkey 已提交
347 348 349 350
def parse_args():
    parser = argparse.ArgumentParser()
    # Required parameters
    # yapf: disable
文幕地方's avatar
add re  
文幕地方 已提交
351 352
    parser.add_argument("--model_name_or_path",
                        default=None, type=str, required=True,)
Z
zhoujun 已提交
353 354
    parser.add_argument("--ser_model_type",
                        default='LayoutXLM', type=str)
文幕地方's avatar
add re  
文幕地方 已提交
355 356 357 358 359 360 361 362 363 364
    parser.add_argument("--re_model_name_or_path",
                        default=None, type=str, required=False,)
    parser.add_argument("--train_data_dir", default=None,
                        type=str, required=False,)
    parser.add_argument("--train_label_path", default=None,
                        type=str, required=False,)
    parser.add_argument("--eval_data_dir", default=None,
                        type=str, required=False,)
    parser.add_argument("--eval_label_path", default=None,
                        type=str, required=False,)
littletomatodonkey's avatar
littletomatodonkey 已提交
365 366 367
    parser.add_argument("--output_dir", default=None, type=str, required=True,)
    parser.add_argument("--max_seq_length", default=512, type=int,)
    parser.add_argument("--evaluate_during_training", action="store_true",)
文幕地方's avatar
文幕地方 已提交
368
    parser.add_argument("--num_workers", default=8, type=int,)
littletomatodonkey's avatar
littletomatodonkey 已提交
369
    parser.add_argument("--per_gpu_train_batch_size", default=1,
文幕地方's avatar
add re  
文幕地方 已提交
370
                        type=int, help="Batch size per GPU/CPU for training.",)
littletomatodonkey's avatar
littletomatodonkey 已提交
371
    parser.add_argument("--per_gpu_eval_batch_size", default=1,
文幕地方's avatar
add re  
文幕地方 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                        type=int, help="Batch size per GPU/CPU for eval.",)
    parser.add_argument("--learning_rate", default=5e-5,
                        type=float, help="The initial learning rate for Adam.",)
    parser.add_argument("--weight_decay", default=0.0,
                        type=float, help="Weight decay if we apply some.",)
    parser.add_argument("--adam_epsilon", default=1e-8,
                        type=float, help="Epsilon for Adam optimizer.",)
    parser.add_argument("--max_grad_norm", default=1.0,
                        type=float, help="Max gradient norm.",)
    parser.add_argument("--num_train_epochs", default=3, type=int,
                        help="Total number of training epochs to perform.",)
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.",)
    parser.add_argument("--eval_steps", type=int, default=10,
                        help="eval every X updates steps.",)
    parser.add_argument("--seed", type=int, default=2048,
                        help="random seed for initialization",)
littletomatodonkey's avatar
littletomatodonkey 已提交
389

390 391
    parser.add_argument("--rec_model_dir", default=None, type=str, )
    parser.add_argument("--det_model_dir", default=None, type=str, )
文幕地方's avatar
add re  
文幕地方 已提交
392 393
    parser.add_argument(
        "--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
littletomatodonkey's avatar
littletomatodonkey 已提交
394
    parser.add_argument("--infer_imgs", default=None, type=str, required=False)
Z
zhoujun 已提交
395
    parser.add_argument("--resume", action='store_true')
文幕地方's avatar
add re  
文幕地方 已提交
396 397
    parser.add_argument("--ocr_json_path", default=None,
                        type=str, required=False, help="ocr prediction results")
littletomatodonkey's avatar
littletomatodonkey 已提交
398 399 400
    # yapf: enable
    args = parser.parse_args()
    return args