rec_resnet_31.py 6.0 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np

__all__ = ["ResNet31"]


def conv3x3(in_channel, out_channel, stride=1):
    return nn.Conv2D(
        in_channel,
        out_channel,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias_attr=False
    )


class BasicBlock(nn.Layer):
    expansion = 1
    def __init__(self, in_channels, channels, stride=1, downsample=False):
        super().__init__()
        self.conv1 = conv3x3(in_channels, channels, stride)
        self.bn1 = nn.BatchNorm2D(channels)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(channels, channels)
        self.bn2 = nn.BatchNorm2D(channels)
        self.downsample = downsample
        if downsample:
            self.downsample = nn.Sequential(
                nn.Conv2D(in_channels, channels * self.expansion, 1, stride, bias_attr=False),
                nn.BatchNorm2D(channels * self.expansion),
            )
        else:
            self.downsample = nn.Sequential()
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out        


class ResNet31(nn.Layer):
    '''
    Args:
        in_channels (int): Number of channels of input image tensor.
        layers (list[int]): List of BasicBlock number for each stage.
        channels (list[int]): List of out_channels of Conv2d layer.
        out_indices (None | Sequence[int]): Indices of output stages.
        last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
    '''
    def __init__(self, 
                in_channels=3, 
                layers=[1, 2, 5, 3],
                channels=[64, 128, 256, 256, 512, 512, 512],
                out_indices=None,
                last_stage_pool=False):
        super(ResNet31, self).__init__()
        assert isinstance(in_channels, int)
        assert isinstance(last_stage_pool, bool)

        self.out_indices = out_indices
        self.last_stage_pool = last_stage_pool

        # conv 1 (Conv Conv)
        self.conv1_1 = nn.Conv2D(in_channels, channels[0], kernel_size=3, stride=1, padding=1)
        self.bn1_1 = nn.BatchNorm2D(channels[0])
        self.relu1_1 = nn.ReLU()

        self.conv1_2 = nn.Conv2D(channels[0], channels[1], kernel_size=3, stride=1, padding=1)
        self.bn1_2 = nn.BatchNorm2D(channels[1])
        self.relu1_2 = nn.ReLU()

        # conv 2 (Max-pooling, Residual block, Conv)
        self.pool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.block2 = self._make_layer(channels[1], channels[2], layers[0])
        self.conv2 = nn.Conv2D(channels[2], channels[2], kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2D(channels[2])
        self.relu2 = nn.ReLU()

        # conv 3 (Max-pooling, Residual block, Conv)
        self.pool3 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.block3 = self._make_layer(channels[2], channels[3], layers[1])
        self.conv3 = nn.Conv2D(channels[3], channels[3], kernel_size=3, stride=1, padding=1)
        self.bn3 = nn.BatchNorm2D(channels[3])
        self.relu3 = nn.ReLU()

        # conv 4 (Max-pooling, Residual block, Conv)
        self.pool4 = nn.MaxPool2D(kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True)
        self.block4 = self._make_layer(channels[3], channels[4], layers[2])
        self.conv4 = nn.Conv2D(channels[4], channels[4], kernel_size=3, stride=1, padding=1)
        self.bn4 = nn.BatchNorm2D(channels[4])
        self.relu4 = nn.ReLU()

        # conv 5 ((Max-pooling), Residual block, Conv)
        self.pool5 = None
        if self.last_stage_pool:
            self.pool5 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self.block5 = self._make_layer(channels[4], channels[5], layers[3])
        self.conv5 = nn.Conv2D(channels[5], channels[5], kernel_size=3, stride=1, padding=1)
        self.bn5 = nn.BatchNorm2D(channels[5])
        self.relu5 = nn.ReLU()

        self.out_channels = channels[-1]
    
    def _make_layer(self, input_channels, output_channels, blocks):
        layers = []
        for _ in range(blocks):
            downsample = None
            if input_channels != output_channels:
                downsample = nn.Sequential(
                    nn.Conv2D(
                        input_channels, 
                        output_channels, 
                        kernel_size=1, 
                        stride=1, 
                        bias_attr=False),
                    nn.BatchNorm2D(output_channels),
                )
                
            layers.append(BasicBlock(input_channels, output_channels, downsample=downsample))
            input_channels = output_channels
        return nn.Sequential(*layers)


    def forward(self, x):
        x = self.conv1_1(x)
        x = self.bn1_1(x)
        x = self.relu1_1(x)

        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)

        outs = []
        for i in range(4):
            layer_index = i + 2
            pool_layer = getattr(self, f'pool{layer_index}')
            block_layer = getattr(self, f'block{layer_index}')
            conv_layer = getattr(self, f'conv{layer_index}')
            bn_layer = getattr(self, f'bn{layer_index}')
            relu_layer = getattr(self, f'relu{layer_index}')

            if pool_layer is not None:
                x = pool_layer(x)
            x = block_layer(x)
            x = conv_layer(x)
            x = bn_layer(x)
            x= relu_layer(x)

            outs.append(x)
        
        if self.out_indices is not None:
            return tuple([outs[i] for i in self.out_indices])
        
        return x