utility.py 21.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
L
LDOUBLEV 已提交
18 19
import cv2
import numpy as np
L
LDOUBLEV 已提交
20 21
import json
from PIL import Image, ImageDraw, ImageFont
22
import math
W
WenmuZhou 已提交
23
from paddle import inference
L
LDOUBLEV 已提交
24 25
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
26

L
LDOUBLEV 已提交
27

28 29
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
30 31


W
WenmuZhou 已提交
32
def init_args():
L
LDOUBLEV 已提交
33
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
34
    # params for prediction engine
L
LDOUBLEV 已提交
35 36 37
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
38
    parser.add_argument("--min_subgraph_size", type=int, default=10)
L
LDOUBLEV 已提交
39
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
40
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
41

W
WenmuZhou 已提交
42
    # params for text detector
L
LDOUBLEV 已提交
43 44 45
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
46 47
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
48

W
WenmuZhou 已提交
49
    # DB parmas
L
LDOUBLEV 已提交
50
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
51 52
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
53
    parser.add_argument("--max_batch_size", type=int, default=10)
L
LDOUBLEV 已提交
54
    parser.add_argument("--use_dilation", type=bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
55
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
56
    # EAST parmas
L
LDOUBLEV 已提交
57 58 59 60
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
61
    # SAST parmas
L
licx 已提交
62 63
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
64
    parser.add_argument("--det_sast_polygon", type=bool, default=False)
L
licx 已提交
65

W
WenmuZhou 已提交
66 67 68 69
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
W
WenmuZhou 已提交
70
    parser.add_argument("--det_pse_box_type", type=str, default='box')
W
WenmuZhou 已提交
71 72
    parser.add_argument("--det_pse_scale", type=int, default=1)

W
WenmuZhou 已提交
73
    # params for text recognizer
L
LDOUBLEV 已提交
74 75
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
76 77
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
L
LDOUBLEV 已提交
78
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
79
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
80 81 82 83
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
84 85
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
86
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
87
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
88

J
Jethong 已提交
89 90 91 92 93 94 95 96 97
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
98
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
99
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
100
    parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
J
Jethong 已提交
101
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
102

W
WenmuZhou 已提交
103 104 105 106 107
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
108
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
109 110 111
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
112
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
113
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
L
LDOUBLEV 已提交
114
    parser.add_argument("--warmup", type=str2bool, default=True)
W
WenmuZhou 已提交
115

L
LDOUBLEV 已提交
116
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
117
    parser.add_argument("--use_mp", type=str2bool, default=False)
118 119
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
120

L
LDOUBLEV 已提交
121 122
    parser.add_argument("--benchmark", type=bool, default=False)
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
123

W
WenmuZhou 已提交
124
    parser.add_argument("--show_log", type=str2bool, default=True)
W
WenmuZhou 已提交
125
    return parser
W
WenmuZhou 已提交
126

127

128
def parse_args():
W
WenmuZhou 已提交
129
    parser = init_args()
L
LDOUBLEV 已提交
130 131 132
    return parser.parse_args()


W
WenmuZhou 已提交
133 134 135 136 137
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
138
    elif mode == 'rec':
W
WenmuZhou 已提交
139
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
140 141
    elif mode == 'table':
        model_dir = args.table_model_dir
J
Jethong 已提交
142 143
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
144 145 146 147

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
文幕地方's avatar
文幕地方 已提交
148 149
    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
W
WenmuZhou 已提交
150
    if not os.path.exists(model_file_path):
L
LDOUBLEV 已提交
151
        raise ValueError("not find model file path {}".format(model_file_path))
W
WenmuZhou 已提交
152
    if not os.path.exists(params_file_path):
L
LDOUBLEV 已提交
153 154
        raise ValueError("not find params file path {}".format(
            params_file_path))
W
WenmuZhou 已提交
155

W
WenmuZhou 已提交
156
    config = inference.Config(model_file_path, params_file_path)
W
WenmuZhou 已提交
157

L
LDOUBLEV 已提交
158 159 160 161 162 163 164 165 166 167
    if hasattr(args, 'precision'):
        if args.precision == "fp16" and args.use_tensorrt:
            precision = inference.PrecisionType.Half
        elif args.precision == "int8":
            precision = inference.PrecisionType.Int8
        else:
            precision = inference.PrecisionType.Float32
    else:
        precision = inference.PrecisionType.Float32

W
WenmuZhou 已提交
168 169
    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
L
LDOUBLEV 已提交
170 171
        if args.use_tensorrt:
            config.enable_tensorrt_engine(
D
Double_V 已提交
172
                precision_mode=precision,
L
LDOUBLEV 已提交
173
                max_batch_size=args.max_batch_size,
L
LDOUBLEV 已提交
174 175
                min_subgraph_size=args.min_subgraph_size)
            # skip the minmum trt subgraph
L
LDOUBLEV 已提交
176
        if mode == "det":
L
LDOUBLEV 已提交
177 178
            min_input_shape = {
                "x": [1, 3, 50, 50],
F
fengshuai03 已提交
179 180
                "conv2d_92.tmp_0": [1, 120, 20, 20],
                "conv2d_91.tmp_0": [1, 24, 10, 10],
L
LDOUBLEV 已提交
181
                "conv2d_59.tmp_0": [1, 96, 20, 20],
F
fengshuai03 已提交
182 183 184 185 186 187
                "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                "conv2d_124.tmp_0": [1, 256, 20, 20],
                "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
L
LDOUBLEV 已提交
188
                "elementwise_add_7": [1, 56, 2, 2],
F
fengshuai03 已提交
189
                "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
L
LDOUBLEV 已提交
190 191 192
            }
            max_input_shape = {
                "x": [1, 3, 2000, 2000],
F
fengshuai03 已提交
193 194
                "conv2d_92.tmp_0": [1, 120, 400, 400],
                "conv2d_91.tmp_0": [1, 24, 200, 200],
L
LDOUBLEV 已提交
195
                "conv2d_59.tmp_0": [1, 96, 400, 400],
F
fengshuai03 已提交
196
                "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
L
LDOUBLEV 已提交
197
                "conv2d_124.tmp_0": [1, 256, 400, 400],
F
fengshuai03 已提交
198 199 200 201
                "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
L
LDOUBLEV 已提交
202
                "elementwise_add_7": [1, 56, 400, 400],
F
fengshuai03 已提交
203
                "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
L
LDOUBLEV 已提交
204 205 206
            }
            opt_input_shape = {
                "x": [1, 3, 640, 640],
F
fengshuai03 已提交
207 208
                "conv2d_92.tmp_0": [1, 120, 160, 160],
                "conv2d_91.tmp_0": [1, 24, 80, 80],
L
LDOUBLEV 已提交
209
                "conv2d_59.tmp_0": [1, 96, 160, 160],
F
fengshuai03 已提交
210 211
                "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
L
LDOUBLEV 已提交
212
                "conv2d_124.tmp_0": [1, 256, 160, 160],
F
fengshuai03 已提交
213 214 215
                "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
L
LDOUBLEV 已提交
216
                "elementwise_add_7": [1, 56, 40, 40],
F
fengshuai03 已提交
217
                "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
L
LDOUBLEV 已提交
218
            }
F
fengshuai03 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            min_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,20,20],
                "nearest_interp_v2_27.tmp_0":[1,64,20,20],
                "nearest_interp_v2_28.tmp_0":[1,64,20,20],
                "nearest_interp_v2_29.tmp_0":[1,64,20,20]
            }
            max_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,400,400],
                "nearest_interp_v2_27.tmp_0":[1,64,400,400],
                "nearest_interp_v2_28.tmp_0":[1,64,400,400],
                "nearest_interp_v2_29.tmp_0":[1,64,400,400]
            }
            opt_pact_shape = {
                "nearest_interp_v2_26.tmp_0":[1,256,160,160],
                "nearest_interp_v2_27.tmp_0":[1,64,160,160],
                "nearest_interp_v2_28.tmp_0":[1,64,160,160],
                "nearest_interp_v2_29.tmp_0":[1,64,160,160]
            }
            min_input_shape.update(min_pact_shape)
            max_input_shape.update(max_pact_shape)
            opt_input_shape.update(opt_pact_shape)
L
LDOUBLEV 已提交
240 241 242 243 244 245 246 247
        elif mode == "rec":
            min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
        elif mode == "cls":
            min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
            max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
            opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
L
LDOUBLEV 已提交
248 249 250 251
        else:
            min_input_shape = {"x": [1, 3, 10, 10]}
            max_input_shape = {"x": [1, 3, 1000, 1000]}
            opt_input_shape = {"x": [1, 3, 500, 500]}
L
LDOUBLEV 已提交
252 253 254
        config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                          opt_input_shape)

W
WenmuZhou 已提交
255 256
    else:
        config.disable_gpu()
L
LDOUBLEV 已提交
257 258 259
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
W
WenmuZhou 已提交
260
            # default cpu threads as 10
L
LDOUBLEV 已提交
261
            config.set_cpu_math_library_num_threads(10)
W
WenmuZhou 已提交
262 263 264 265 266
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()

L
LDOUBLEV 已提交
267 268
    # enable memory optim
    config.enable_memory_optim()
L
LDOUBLEV 已提交
269
    #config.disable_glog_info()
W
WenmuZhou 已提交
270

W
WenmuZhou 已提交
271
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
W
WenmuZhou 已提交
272
    if mode == 'table':
W
WenmuZhou 已提交
273
        config.delete_pass("fc_fuse_pass")  # not supported for table
W
WenmuZhou 已提交
274
    config.switch_use_feed_fetch_ops(False)
W
WenmuZhou 已提交
275
    config.switch_ir_optim(True)
276

W
WenmuZhou 已提交
277 278
    # create predictor
    predictor = inference.create_predictor(config)
W
WenmuZhou 已提交
279 280
    input_names = predictor.get_input_names()
    for name in input_names:
W
WenmuZhou 已提交
281
        input_tensor = predictor.get_input_handle(name)
W
WenmuZhou 已提交
282 283 284
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
W
WenmuZhou 已提交
285
        output_tensor = predictor.get_output_handle(output_name)
W
WenmuZhou 已提交
286
        output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
287
    return predictor, input_tensor, output_tensors, config
W
WenmuZhou 已提交
288 289


J
Jethong 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
306
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
307 308 309 310
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
311
    return src_im
L
LDOUBLEV 已提交
312 313


L
LDOUBLEV 已提交
314 315
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
316
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
317 318 319 320 321
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
322 323
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
324 325


W
WenmuZhou 已提交
326 327 328 329 330
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
331
             font_path="./doc/fonts/simfang.ttf"):
332 333 334
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
335
        image(Image|array): RGB image
336 337 338 339
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
340
        font_path: the path of font which is used to draw text
341 342 343
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
344 345
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
346 347 348 349
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
350
            continue
W
WenmuZhou 已提交
351
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
352
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
353
    if txts is not None:
L
LDOUBLEV 已提交
354
        img = np.array(resize_img(image, input_size=600))
355
        txt_img = text_visual(
W
WenmuZhou 已提交
356 357 358 359 360 361
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
362
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
363 364
        return img
    return image
365 366


W
WenmuZhou 已提交
367 368 369 370 371 372
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
373 374 375
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
376 377

    import random
L
LDOUBLEV 已提交
378

379 380 381
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
382 383 384
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
385 386
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
387
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
388 389 390 391 392 393 394 395 396 397
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
398 399
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
400
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
401 402 403
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
404 405
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
406 407 408
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
409
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
410 411
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
412 413 414 415
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
416 417 418
    return np.array(img_show)


419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
443 444 445 446 447 448
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
449 450 451 452 453 454 455
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
456
        font_path: the path of font which is used to draw text
457 458 459 460 461 462 463 464 465
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
466 467
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
468
        return blank_img, draw_txt
L
LDOUBLEV 已提交
469

470 471 472 473
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
474
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
475 476 477

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
478
    count, index = 1, 0
479 480
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
481
        if scores[idx] < threshold or math.isnan(scores[idx]):
482 483 484 485 486 487 488 489 490 491 492
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
493
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
494 495 496 497 498
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
499
            count += 1
500 501 502
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
503
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
504
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
505
        # whether add new blank img or not
L
LDOUBLEV 已提交
506
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
507 508 509
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
510
        count += 1
511 512 513 514 515 516
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
517 518


D
dyning 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


L
LDOUBLEV 已提交
573
if __name__ == '__main__':
L
LDOUBLEV 已提交
574
    pass