rec_r31_sar.yml 2.6 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Global:
  use_gpu: true
  epoch_num: 5
  log_smooth_window: 20
  print_batch_step: 20
  save_model_dir: /paddle/backup/sar_rec/sar_train_v3
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model: #/paddle/backup/sar_rec/sar_train_v2/best_accuracy
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: demo_text_recog.jpg 
  # for data or label process
  character_dict_path: ppocr/utils/dict90.txt
  character_type: ch
  max_text_length: 30
  infer_mode: False
  use_space_char: False
  save_res_path: ./output/rec/predicts_sar.txt

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Piecewise
    decay_epochs: [3, 4]
    values: [0.001, 0.0001, 0.00001] 
  regularizer:
    name: 'L2'
    factor: 0

Architecture:
  model_type: rec
  algorithm: SAR
  Transform:
  Backbone:
    name: ResNet31
  Head:
    name: SARHead

Loss:
  name: SARLoss

PostProcess:
  name: SARLabelDecode

Metric:
  name: RecMetric


Train:
  dataset:
    name: LMDBDataSet #SimpleDataSet
    # delimiter: ' '
    # label_file_list: ['/paddle/data/concat_data/icdar_2013_train20.txt', '/paddle/data/concat_data/icdar_2015_train20.txt', '/paddle/data/concat_data/coco_text_train20.txt', '/paddle/data/concat_data/IIIt5k_train20.txt', '/paddle/data/concat_data/SynthAdd_train.txt', '/paddle/data/concat_data/SynthText_train.txt', '/paddle/data/concat_data/Syn90k_train.txt']
    data_dir: /paddle/data/ocr_data/training/ #/paddle/data/concat_data/
    # ratio_list: 1.0
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - SARLabelEncode: # Class handling label
      - SARRecResizeImg:
          image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
          width_downsample_ratio: 0.25
      - KeepKeys:
          keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 64 # 32
    drop_last: True
    num_workers: 8
    use_shared_memory: False

Eval:
  dataset:
    name: LMDBDataSet
    data_dir: /paddle/data/ocr_data/evaluation/
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - SARLabelEncode: # Class handling label
      - SARRecResizeImg:
          image_shape: [3, 48, 48, 160]
          width_downsample_ratio: 0.25
      - KeepKeys:
          keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 64
    num_workers: 4
    use_shared_memory: False