tps.py 12.0 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import math
W
WenmuZhou 已提交
20 21 22 23 24
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np

T
tink2123 已提交
25 26 27
from .tps_spatial_transformer import TPSSpatialTransformer
from .stn import STN

W
WenmuZhou 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = "bn_" + name
        self.bn = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class LocalizationNetwork(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(LocalizationNetwork, self).__init__()
        self.F = num_fiducial
        F = num_fiducial
        if model_name == "large":
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64

        self.block_list = []
        for fno in range(0, len(num_filters_list)):
            num_filters = num_filters_list[fno]
            name = "loc_conv%d" % fno
            conv = self.add_sublayer(
                name,
                ConvBNLayer(
                    in_channels=in_channels,
                    out_channels=num_filters,
                    kernel_size=3,
                    act='relu',
                    name=name))
            self.block_list.append(conv)
            if fno == len(num_filters_list) - 1:
                pool = nn.AdaptiveAvgPool2D(1)
            else:
                pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
            in_channels = num_filters
            self.block_list.append(pool)
        name = "loc_fc1"
W
WenmuZhou 已提交
95
        stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
W
WenmuZhou 已提交
96 97 98 99
        self.fc1 = nn.Linear(
            in_channels,
            fc_dim,
            weight_attr=ParamAttr(
W
WenmuZhou 已提交
100 101 102
                learning_rate=loc_lr,
                name=name + "_w",
                initializer=nn.initializer.Uniform(-stdv, stdv)),
W
WenmuZhou 已提交
103 104 105 106 107 108 109 110 111
            bias_attr=ParamAttr(name=name + '.b_0'),
            name=name)

        # Init fc2 in LocalizationNetwork
        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        name = "loc_fc2"
        param_attr = ParamAttr(
            learning_rate=loc_lr,
W
WenmuZhou 已提交
112
            initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
W
WenmuZhou 已提交
113 114 115
            name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=loc_lr,
W
WenmuZhou 已提交
116
            initializer=nn.initializer.Assign(initial_bias),
W
WenmuZhou 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            name=name + "_b")
        self.fc2 = nn.Linear(
            fc_dim,
            F * 2,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
        self.out_channels = F * 2

    def forward(self, x):
        """
           Estimating parameters of geometric transformation
           Args:
               image: input
           Return:
               batch_C_prime: the matrix of the geometric transformation
        """
        B = x.shape[0]
        i = 0
        for block in self.block_list:
            x = block(x)
W
WenmuZhou 已提交
138
        x = x.squeeze(axis=2).squeeze(axis=2)
W
WenmuZhou 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        x = self.fc1(x)

        x = F.relu(x)
        x = self.fc2(x)
        x = x.reshape(shape=[-1, self.F, 2])
        return x

    def get_initial_fiducials(self):
        """ see RARE paper Fig. 6 (a) """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias


class GridGenerator(nn.Layer):
    def __init__(self, in_channels, num_fiducial):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = num_fiducial

        name = "ex_fc"
        initializer = nn.initializer.Constant(value=0.0)
        param_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_b")
        self.fc = nn.Linear(
            in_channels,
            6,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)

    def forward(self, batch_C_prime, I_r_size):
        """
        Generate the grid for the grid_sampler.
        Args:
            batch_C_prime: the matrix of the geometric transformation
            I_r_size: the shape of the input image
        Return:
            batch_P_prime: the grid for the grid_sampler
        """
W
WenmuZhou 已提交
186 187 188 189 190 191
        C = self.build_C_paddle()
        P = self.build_P_paddle(I_r_size)

        inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
        P_hat_tensor = self.build_P_hat_paddle(
            C, paddle.to_tensor(P)).astype('float32')
W
WenmuZhou 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205

        inv_delta_C_tensor.stop_gradient = True
        P_hat_tensor.stop_gradient = True

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)

        batch_C_ex_part_tensor.stop_gradient = True

        batch_C_prime_with_zeros = paddle.concat(
            [batch_C_prime, batch_C_ex_part_tensor], axis=1)
        batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
        batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
        return batch_P_prime

W
WenmuZhou 已提交
206
    def build_C_paddle(self):
W
WenmuZhou 已提交
207 208
        """ Return coordinates of fiducial points in I_r; C """
        F = self.F
W
WenmuZhou 已提交
209 210 211
        ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
        ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
        ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
W
WenmuZhou 已提交
212 213 214
        ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
W
WenmuZhou 已提交
215 216
        return C  # F x 2

W
WenmuZhou 已提交
217 218
    def build_P_paddle(self, I_r_size):
        I_r_height, I_r_width = I_r_size
W
WenmuZhou 已提交
219 220 221 222 223 224 225 226
        I_r_grid_x = (paddle.arange(
            -I_r_width, I_r_width, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_width]))

        I_r_grid_y = (paddle.arange(
            -I_r_height, I_r_height, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_height]))

W
WenmuZhou 已提交
227
        # P: self.I_r_width x self.I_r_height x 2
W
WenmuZhou 已提交
228 229
        P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
        P = paddle.transpose(P, perm=[1, 0, 2])
W
WenmuZhou 已提交
230 231 232
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

W
WenmuZhou 已提交
233
    def build_inv_delta_C_paddle(self, C):
W
WenmuZhou 已提交
234 235
        """ Return inv_delta_C which is needed to calculate T """
        F = self.F
L
LDOUBLEV 已提交
236
        hat_eye = paddle.eye(F, dtype='float64')  # F x F
T
tink2123 已提交
237 238
        hat_C = paddle.norm(
            C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
W
WenmuZhou 已提交
239 240
        hat_C = (hat_C**2) * paddle.log(hat_C)
        delta_C = paddle.concat(  # F+3 x F+3
W
WenmuZhou 已提交
241
            [
W
WenmuZhou 已提交
242
                paddle.concat(
W
WenmuZhou 已提交
243 244
                    [paddle.ones(
                        (F, 1), dtype='float64'), C, hat_C], axis=1),  # F x F+3
W
WenmuZhou 已提交
245
                paddle.concat(
W
WenmuZhou 已提交
246 247 248 249 250
                    [
                        paddle.zeros(
                            (2, 3), dtype='float64'), paddle.transpose(
                                C, perm=[1, 0])
                    ],
W
WenmuZhou 已提交
251 252
                    axis=1),  # 2 x F+3
                paddle.concat(
W
WenmuZhou 已提交
253 254 255 256 257
                    [
                        paddle.zeros(
                            (1, 3), dtype='float64'), paddle.ones(
                                (1, F), dtype='float64')
                    ],
W
WenmuZhou 已提交
258
                    axis=1)  # 1 x F+3
W
WenmuZhou 已提交
259 260
            ],
            axis=0)
W
WenmuZhou 已提交
261
        inv_delta_C = paddle.inverse(delta_C)
W
WenmuZhou 已提交
262 263
        return inv_delta_C  # F+3 x F+3

W
WenmuZhou 已提交
264
    def build_P_hat_paddle(self, C, P):
W
WenmuZhou 已提交
265 266 267 268
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
W
WenmuZhou 已提交
269 270
        P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
        C_tile = paddle.unsqueeze(C, axis=0)  # 1 x F x 2
W
WenmuZhou 已提交
271 272
        P_diff = P_tile - C_tile  # n x F x 2
        # rbf_norm: n x F
W
WenmuZhou 已提交
273 274
        rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)

W
WenmuZhou 已提交
275
        # rbf: n x F
W
WenmuZhou 已提交
276 277
        rbf = paddle.multiply(
            paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
W
WenmuZhou 已提交
278 279 280
        P_hat = paddle.concat(
            [paddle.ones(
                (n, 1), dtype='float64'), P, rbf], axis=1)
W
WenmuZhou 已提交
281 282 283
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
W
WenmuZhou 已提交
284 285
        B, H, C = batch_C_prime.shape
        batch_C_prime = batch_C_prime.reshape([B, H * C])
W
WenmuZhou 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        batch_C_ex_part_tensor = self.fc(batch_C_prime)
        batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
        return batch_C_ex_part_tensor


class TPS(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
                                           model_name)
        self.grid_generator = GridGenerator(self.loc_net.out_channels,
                                            num_fiducial)
        self.out_channels = in_channels

    def forward(self, image):
        image.stop_gradient = False
        batch_C_prime = self.loc_net(image)
W
WenmuZhou 已提交
303
        batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
W
WenmuZhou 已提交
304 305 306 307
        batch_P_prime = batch_P_prime.reshape(
            [-1, image.shape[2], image.shape[3], 2])
        batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
        return batch_I_r
T
tink2123 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330


class STN_ON(nn.Layer):
    def __init__(self, in_channels, tps_inputsize, tps_outputsize,
                 num_control_points, tps_margins, stn_activation):
        super(STN_ON, self).__init__()
        self.tps = TPSSpatialTransformer(
            output_image_size=tuple(tps_outputsize),
            num_control_points=num_control_points,
            margins=tuple(tps_margins))
        self.stn_head = STN(in_channels=in_channels,
                            num_ctrlpoints=num_control_points,
                            activation=stn_activation)
        self.tps_inputsize = tps_inputsize
        self.out_channels = in_channels

    def forward(self, image):
        stn_input = paddle.nn.functional.interpolate(
            image, self.tps_inputsize, mode="bilinear", align_corners=True)
        stn_img_feat, ctrl_points = self.stn_head(stn_input)
        x, _ = self.tps(image, ctrl_points)
        # print(x.shape)
        return x