fce_aug.py 22.8 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
import numpy as np
from PIL import Image, ImageDraw
import paddle.vision.transforms as paddle_trans
import cv2
import Polygon as plg
import math


def imresize(img,
             size,
             return_scale=False,
             interpolation='bilinear',
             out=None,
             backend=None):
    """Resize image to a given size.

    Args:
        img (ndarray): The input image.
        size (tuple[int]): Target size (w, h).
        return_scale (bool): Whether to return `w_scale` and `h_scale`.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend.
        out (ndarray): The output destination.
        backend (str | None): The image resize backend type. Options are `cv2`,
            `pillow`, `None`. If backend is None, the global imread_backend
            specified by ``mmcv.use_backend()`` will be used. Default: None.

    Returns:
        tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or
            `resized_img`.
    """
    cv2_interp_codes = {
        'nearest': cv2.INTER_NEAREST,
        'bilinear': cv2.INTER_LINEAR,
        'bicubic': cv2.INTER_CUBIC,
        'area': cv2.INTER_AREA,
        'lanczos': cv2.INTER_LANCZOS4
    }
    h, w = img.shape[:2]
    if backend is None:
        backend = 'cv2'
    if backend not in ['cv2', 'pillow']:
        raise ValueError(f'backend: {backend} is not supported for resize.'
                         f"Supported backends are 'cv2', 'pillow'")

    if backend == 'pillow':
        assert img.dtype == np.uint8, 'Pillow backend only support uint8 type'
        pil_image = Image.fromarray(img)
        pil_image = pil_image.resize(size, pillow_interp_codes[interpolation])
        resized_img = np.array(pil_image)
    else:
        resized_img = cv2.resize(
            img, size, dst=out, interpolation=cv2_interp_codes[interpolation])
    if not return_scale:
        return resized_img
    else:
        w_scale = size[0] / w
        h_scale = size[1] / h
        return resized_img, w_scale, h_scale


class RandomScaling:
    def __init__(self, size=800, scale=(3. / 4, 5. / 2), **kwargs):
        """Random scale the image while keeping aspect.

        Args:
            size (int) : Base size before scaling.
            scale (tuple(float)) : The range of scaling.
        """
        assert isinstance(size, int)
        assert isinstance(scale, float) or isinstance(scale, tuple)
        self.size = size
        self.scale = scale if isinstance(scale, tuple) \
            else (1 - scale, 1 + scale)

    def __call__(self, data):
        image = data['image']
        text_polys = data['polys']
        h, w, _ = image.shape

        aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
        scales = self.size * 1.0 / max(h, w) * aspect_ratio
        scales = np.array([scales, scales])
        out_size = (int(h * scales[1]), int(w * scales[0]))
        image = imresize(image, out_size[::-1])

        data['image'] = image
        text_polys[:, :, 0::2] = text_polys[:, :, 0::2] * scales[1]
        text_polys[:, :, 1::2] = text_polys[:, :, 1::2] * scales[0]
        data['polys'] = text_polys

        # import os
        # base_name = os.path.split(data['img_path'])[-1]
        # img = image[..., ::-1]
        # img = Image.fromarray(img)
        # draw = ImageDraw.Draw(img)
        # for box in text_polys:
        #     draw.polygon(box, outline=(0, 255, 255,), )
        # import time
        # img.save('tmp/{}.jpg'.format(base_name[:-4]))

        return data


def poly_intersection(poly_det, poly_gt):
    """Calculate the intersection area between two polygon.

    Args:
        poly_det (Polygon): A polygon predicted by detector.
        poly_gt (Polygon): A gt polygon.

    Returns:
        intersection_area (float): The intersection area between two polygons.
    """
    assert isinstance(poly_det, plg.Polygon)
    assert isinstance(poly_gt, plg.Polygon)

    poly_inter = poly_det & poly_gt
    if len(poly_inter) == 0:
        return 0, poly_inter
    return poly_inter.area(), poly_inter


class RandomCropFlip:
    def __init__(self,
                 pad_ratio=0.1,
                 crop_ratio=0.5,
                 iter_num=1,
                 min_area_ratio=0.2,
                 **kwargs):
        """Random crop and flip a patch of the image.

        Args:
            crop_ratio (float): The ratio of cropping.
            iter_num (int): Number of operations.
            min_area_ratio (float): Minimal area ratio between cropped patch
                and original image.
        """
        assert isinstance(crop_ratio, float)
        assert isinstance(iter_num, int)
        assert isinstance(min_area_ratio, float)

        self.pad_ratio = pad_ratio
        self.epsilon = 1e-2
        self.crop_ratio = crop_ratio
        self.iter_num = iter_num
        self.min_area_ratio = min_area_ratio

    def __call__(self, results):
        for i in range(self.iter_num):
            results = self.random_crop_flip(results)

        return results

    def random_crop_flip(self, results):
        image = results['image']
        polygons = results['polys']
        ignore_tags = results['ignore_tags']
        if len(polygons) == 0:
            return results

        if np.random.random() >= self.crop_ratio:
            return results

        h, w, _ = image.shape
        area = h * w
        pad_h = int(h * self.pad_ratio)
        pad_w = int(w * self.pad_ratio)
        h_axis, w_axis = self.generate_crop_target(image, polygons, pad_h,
                                                   pad_w)
        if len(h_axis) == 0 or len(w_axis) == 0:
            return results

        attempt = 0
        while attempt < 50:
            attempt += 1
            polys_keep = []
            polys_new = []
            ignore_tags_keep = []
            ignore_tags_new = []
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
                # area too small
                continue

            pts = np.stack([[xmin, xmax, xmax, xmin],
                            [ymin, ymin, ymax, ymax]]).T.astype(np.int32)
            pp = plg.Polygon(pts)
            fail_flag = False
            for polygon, ignore_tag in zip(polygons, ignore_tags):
                ppi = plg.Polygon(polygon.reshape(-1, 2))
                ppiou, _ = poly_intersection(ppi, pp)
                if np.abs(ppiou - float(ppi.area())) > self.epsilon and \
                        np.abs(ppiou) > self.epsilon:
                    fail_flag = True
                    break
                elif np.abs(ppiou - float(ppi.area())) < self.epsilon:
                    polys_new.append(polygon)
                    ignore_tags_new.append(ignore_tag)
                else:
                    polys_keep.append(polygon)
                    ignore_tags_keep.append(ignore_tag)

            if fail_flag:
                continue
            else:
                break

        cropped = image[ymin:ymax, xmin:xmax, :]
        select_type = np.random.randint(3)
        if select_type == 0:
            img = np.ascontiguousarray(cropped[:, ::-1])
        elif select_type == 1:
            img = np.ascontiguousarray(cropped[::-1, :])
        else:
            img = np.ascontiguousarray(cropped[::-1, ::-1])
        image[ymin:ymax, xmin:xmax, :] = img
        results['img'] = image

        if len(polys_new) != 0:
            height, width, _ = cropped.shape
            if select_type == 0:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    polys_new[idx] = poly
            elif select_type == 1:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = poly
            else:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon.reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = poly
            polygons = polys_keep + polys_new
            ignore_tags = ignore_tags_keep + ignore_tags_new
            results['polys'] = np.array(polygons)
            results['ignore_tags'] = ignore_tags

        return results

    def generate_crop_target(self, image, all_polys, pad_h, pad_w):
        """Generate crop target and make sure not to crop the polygon
        instances.

        Args:
            image (ndarray): The image waited to be crop.
            all_polys (list[list[ndarray]]): All polygons including ground
                truth polygons and ground truth ignored polygons.
            pad_h (int): Padding length of height.
            pad_w (int): Padding length of width.
        Returns:
            h_axis (ndarray): Vertical cropping range.
            w_axis (ndarray): Horizontal cropping range.
        """
        h, w, _ = image.shape
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)

        text_polys = []
        for polygon in all_polys:
            rect = cv2.minAreaRect(polygon.astype(np.int32).reshape(-1, 2))
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            text_polys.append([box[0], box[1], box[2], box[3]])

        polys = np.array(text_polys, dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w:maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h:maxy + pad_h] = 1

        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        return h_axis, w_axis


class RandomCropPolyInstances:
    """Randomly crop images and make sure to contain at least one intact
    instance."""

    def __init__(self, crop_ratio=5.0 / 8.0, min_side_ratio=0.4, **kwargs):
        super().__init__()
        self.crop_ratio = crop_ratio
        self.min_side_ratio = min_side_ratio

    def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):

        assert isinstance(min_len, int)
        assert len(valid_array) > min_len

        start_array = valid_array.copy()
        max_start = min(len(start_array) - min_len, max_start)
        start_array[max_start:] = 0
        start_array[0] = 1
        diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        start = np.random.randint(region_starts[region_ind],
                                  region_ends[region_ind])

        end_array = valid_array.copy()
        min_end = max(start + min_len, min_end)
        end_array[:min_end] = 0
        end_array[-1] = 1
        diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        end = np.random.randint(region_starts[region_ind],
                                region_ends[region_ind])
        return start, end

    def sample_crop_box(self, img_size, results):
        """Generate crop box and make sure not to crop the polygon instances.

        Args:
            img_size (tuple(int)): The image size (h, w).
            results (dict): The results dict.
        """

        assert isinstance(img_size, tuple)
        h, w = img_size[:2]

        key_masks = results['polys']

        x_valid_array = np.ones(w, dtype=np.int32)
        y_valid_array = np.ones(h, dtype=np.int32)

        selected_mask = key_masks[np.random.randint(0, len(key_masks))]
        selected_mask = selected_mask.reshape((-1, 2)).astype(np.int32)
        max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
        min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
        max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
        min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)

        # for key in results.get('mask_fields', []):
        #     if len(results[key].masks) == 0:
        #         continue
        #     masks = results[key].masks
        for mask in key_masks:
            # assert len(mask) == 1
            mask = mask.reshape((-1, 2)).astype(np.int32)
            clip_x = np.clip(mask[:, 0], 0, w - 1)
            clip_y = np.clip(mask[:, 1], 0, h - 1)
            min_x, max_x = np.min(clip_x), np.max(clip_x)
            min_y, max_y = np.min(clip_y), np.max(clip_y)

            x_valid_array[min_x - 2:max_x + 3] = 0
            y_valid_array[min_y - 2:max_y + 3] = 0

        min_w = int(w * self.min_side_ratio)
        min_h = int(h * self.min_side_ratio)

        x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
                                             min_x_end)
        y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
                                             min_y_end)

        return np.array([x1, y1, x2, y2])

    def crop_img(self, img, bbox):
        assert img.ndim == 3
        h, w, _ = img.shape
        assert 0 <= bbox[1] < bbox[3] <= h
        assert 0 <= bbox[0] < bbox[2] <= w
        return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]

    def __call__(self, results):
        image = results['image']
        polygons = results['polys']
        ignore_tags = results['ignore_tags']
        if len(polygons) < 1:
            return results

        if np.random.random_sample() < self.crop_ratio:

            crop_box = self.sample_crop_box(image.shape, results)
            img = self.crop_img(image, crop_box)
            results['image'] = img
            # crop and filter masks
            x1, y1, x2, y2 = crop_box
            w = max(x2 - x1, 1)
            h = max(y2 - y1, 1)
            polygons[:, :, 0::2] = polygons[:, :, 0::2] - x1
            polygons[:, :, 1::2] = polygons[:, :, 1::2] - y1

            valid_masks_list = []
            valid_tags_list = []
            for ind, polygon in enumerate(polygons):
                if (polygon[:, ::2] > -4).all() and (
                        polygon[:, ::2] < w + 4).all() and (
                            polygon[:, 1::2] > -4).all() and (
                                polygon[:, 1::2] < h + 4).all():
                    polygon[:, ::2] = np.clip(polygon[:, ::2], 0, w)
                    polygon[:, 1::2] = np.clip(polygon[:, 1::2], 0, h)
                    valid_masks_list.append(polygon)
                    valid_tags_list.append(ignore_tags[ind])

            results['polys'] = np.array(valid_masks_list)
            results['ignore_tags'] = valid_tags_list

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


class RandomRotatePolyInstances:
    def __init__(self,
                 rotate_ratio=0.5,
                 max_angle=10,
                 pad_with_fixed_color=False,
                 pad_value=(0, 0, 0),
                 **kwargs):
        """Randomly rotate images and polygon masks.

        Args:
            rotate_ratio (float): The ratio of samples to operate rotation.
            max_angle (int): The maximum rotation angle.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rotated image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        self.rotate_ratio = rotate_ratio
        self.max_angle = max_angle
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def rotate(self, center, points, theta, center_shift=(0, 0)):
        # rotate points.
        (center_x, center_y) = center
        center_y = -center_y
        x, y = points[:, ::2], points[:, 1::2]
        y = -y

        theta = theta / 180 * math.pi
        cos = math.cos(theta)
        sin = math.sin(theta)

        x = (x - center_x)
        y = (y - center_y)

        _x = center_x + x * cos - y * sin + center_shift[0]
        _y = -(center_y + x * sin + y * cos) + center_shift[1]

        points[:, ::2], points[:, 1::2] = _x, _y
        return points

    def cal_canvas_size(self, ori_size, degree):
        assert isinstance(ori_size, tuple)
        angle = degree * math.pi / 180.0
        h, w = ori_size[:2]

        cos = math.cos(angle)
        sin = math.sin(angle)
        canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
        canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))

        canvas_size = (canvas_h, canvas_w)
        return canvas_size

    def sample_angle(self, max_angle):
        angle = np.random.random_sample() * 2 * max_angle - max_angle
        return angle

    def rotate_img(self, img, angle, canvas_size):
        h, w = img.shape[:2]
        rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
        rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
        rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)

        if self.pad_with_fixed_color:
            target_img = cv2.warpAffine(
                img,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                flags=cv2.INTER_NEAREST,
                borderValue=self.pad_value)
        else:
            mask = np.zeros_like(img)
            (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
                              np.random.randint(0, w * 7 // 8))
            img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
            img_cut = imresize(img_cut, (canvas_size[1], canvas_size[0]))
            mask = cv2.warpAffine(
                mask,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                borderValue=[1, 1, 1])
            target_img = cv2.warpAffine(
                img,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                borderValue=[0, 0, 0])
            target_img = target_img + img_cut * mask

        return target_img

    def __call__(self, results):
        if np.random.random_sample() < self.rotate_ratio:
            image = results['image']
            polygons = results['polys']
            h, w = image.shape[:2]

            angle = self.sample_angle(self.max_angle)
            canvas_size = self.cal_canvas_size((h, w), angle)
            center_shift = (int((canvas_size[1] - w) / 2), int(
                (canvas_size[0] - h) / 2))
            image = self.rotate_img(image, angle, canvas_size)
            results['image'] = image
            # rotate polygons
            rotated_masks = []
            for mask in polygons:
                rotated_mask = self.rotate((w / 2, h / 2), mask, angle,
                                           center_shift)
                rotated_masks.append(rotated_mask)
            results['polys'] = np.array(rotated_masks)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


class SquareResizePad:
    def __init__(self,
                 target_size,
                 pad_ratio=0.6,
                 pad_with_fixed_color=False,
                 pad_value=(0, 0, 0),
                 **kwargs):
        """Resize or pad images to be square shape.

        Args:
            target_size (int): The target size of square shaped image.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rescales image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        assert isinstance(target_size, int)
        assert isinstance(pad_ratio, float)
        assert isinstance(pad_with_fixed_color, bool)
        assert isinstance(pad_value, tuple)

        self.target_size = target_size
        self.pad_ratio = pad_ratio
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def resize_img(self, img, keep_ratio=True):
        h, w, _ = img.shape
        if keep_ratio:
            t_h = self.target_size if h >= w else int(h * self.target_size / w)
            t_w = self.target_size if h <= w else int(w * self.target_size / h)
        else:
            t_h = t_w = self.target_size
        img = imresize(img, (t_w, t_h))
        return img, (t_h, t_w)

    def square_pad(self, img):
        h, w = img.shape[:2]
        if h == w:
            return img, (0, 0)
        pad_size = max(h, w)
        if self.pad_with_fixed_color:
            expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
            expand_img[:] = self.pad_value
        else:
            (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
                              np.random.randint(0, w * 7 // 8))
            img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
            expand_img = imresize(img_cut, (pad_size, pad_size))
        if h > w:
            y0, x0 = 0, (h - w) // 2
        else:
            y0, x0 = (w - h) // 2, 0
        expand_img[y0:y0 + h, x0:x0 + w] = img
        offset = (x0, y0)

        return expand_img, offset

    def square_pad_mask(self, points, offset):
        x0, y0 = offset
        pad_points = points.copy()
        pad_points[::2] = pad_points[::2] + x0
        pad_points[1::2] = pad_points[1::2] + y0
        return pad_points

    def __call__(self, results):
        image = results['image']
        polygons = results['polys']
        h, w = image.shape[:2]

        if np.random.random_sample() < self.pad_ratio:
            image, out_size = self.resize_img(image, keep_ratio=True)
            image, offset = self.square_pad(image)
        else:
            image, out_size = self.resize_img(image, keep_ratio=False)
            offset = (0, 0)
        # image, out_size = self.resize_img(image, keep_ratio=True)
        # image, offset = self.square_pad(image)
        results['image'] = image
        polygons[:, :, 0::2] = polygons[:, :, 0::2] * out_size[1] / w + offset[
            0]
        polygons[:, :, 1::2] = polygons[:, :, 1::2] * out_size[0] / h + offset[
            1]
        results['polys'] = polygons

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str