table_att_head.py 10.1 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import math
M
MissPenguin 已提交
20 21
import paddle
import paddle.nn as nn
文幕地方's avatar
文幕地方 已提交
22
from paddle import ParamAttr
M
MissPenguin 已提交
23 24 25
import paddle.nn.functional as F
import numpy as np

文幕地方's avatar
文幕地方 已提交
26 27
from .rec_att_head import AttentionGRUCell

M
refine  
MissPenguin 已提交
28

文幕地方's avatar
文幕地方 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
def get_para_bias_attr(l2_decay, k):
    if l2_decay > 0:
        regularizer = paddle.regularizer.L2Decay(l2_decay)
        stdv = 1.0 / math.sqrt(k * 1.0)
        initializer = nn.initializer.Uniform(-stdv, stdv)
    else:
        regularizer = None
        initializer = None
    weight_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
    bias_attr = ParamAttr(regularizer=regularizer, initializer=initializer)
    return [weight_attr, bias_attr]


M
MissPenguin 已提交
42
class TableAttentionHead(nn.Layer):
43 44 45 46
    def __init__(self,
                 in_channels,
                 hidden_size,
                 in_max_len=488,
文幕地方's avatar
文幕地方 已提交
47
                 max_text_length=800,
文幕地方's avatar
fix bug  
文幕地方 已提交
48
                 out_channels=30,
文幕地方's avatar
文幕地方 已提交
49
                 loc_reg_num=4,
50
                 **kwargs):
M
MissPenguin 已提交
51 52 53
        super(TableAttentionHead, self).__init__()
        self.input_size = in_channels[-1]
        self.hidden_size = hidden_size
文幕地方's avatar
fix bug  
文幕地方 已提交
54
        self.out_channels = out_channels
55
        self.max_text_length = max_text_length
M
MissPenguin 已提交
56 57

        self.structure_attention_cell = AttentionGRUCell(
文幕地方's avatar
fix bug  
文幕地方 已提交
58 59
            self.input_size, hidden_size, self.out_channels, use_gru=False)
        self.structure_generator = nn.Linear(hidden_size, self.out_channels)
M
MissPenguin 已提交
60
        self.in_max_len = in_max_len
61

62 63 64 65
        if self.in_max_len == 640:
            self.loc_fea_trans = nn.Linear(400, self.max_text_length + 1)
        elif self.in_max_len == 800:
            self.loc_fea_trans = nn.Linear(625, self.max_text_length + 1)
M
MissPenguin 已提交
66
        else:
67 68 69
            self.loc_fea_trans = nn.Linear(256, self.max_text_length + 1)
        self.loc_generator = nn.Linear(self.input_size + hidden_size,
                                       loc_reg_num)
70

M
MissPenguin 已提交
71 72 73 74
    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

M
refine  
MissPenguin 已提交
75
    def forward(self, inputs, targets=None):
M
MissPenguin 已提交
76 77 78
        # if and else branch are both needed when you want to assign a variable
        # if you modify the var in just one branch, then the modification will not work.
        fea = inputs[-1]
79 80 81
        last_shape = int(np.prod(fea.shape[2:]))  # gry added
        fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], last_shape])
        fea = fea.transpose([0, 2, 1])  # (NTC)(batch, width, channels)
M
MissPenguin 已提交
82
        batch_size = fea.shape[0]
83

M
MissPenguin 已提交
84
        hidden = paddle.zeros((batch_size, self.hidden_size))
文幕地方's avatar
文幕地方 已提交
85 86
        output_hiddens = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.hidden_size))
M
refine  
MissPenguin 已提交
87
        if self.training and targets is not None:
M
MissPenguin 已提交
88
            structure = targets[0]
文幕地方's avatar
文幕地方 已提交
89
            for i in range(self.max_text_length + 1):
M
MissPenguin 已提交
90
                elem_onehots = self._char_to_onehot(
文幕地方's avatar
fix bug  
文幕地方 已提交
91
                    structure[:, i], onehot_dim=self.out_channels)
M
MissPenguin 已提交
92 93
                (outputs, hidden), alpha = self.structure_attention_cell(
                    hidden, fea, elem_onehots)
94
                output_hiddens[:, i, :] = outputs
文幕地方's avatar
文幕地方 已提交
95 96 97 98 99 100 101
            structure_probs = self.structure_generator(output_hiddens)
            loc_fea = fea.transpose([0, 2, 1])
            loc_fea = self.loc_fea_trans(loc_fea)
            loc_fea = loc_fea.transpose([0, 2, 1])
            loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
            loc_preds = self.loc_generator(loc_concat)
            loc_preds = F.sigmoid(loc_preds)
M
MissPenguin 已提交
102 103 104 105 106 107 108
        else:
            temp_elem = paddle.zeros(shape=[batch_size], dtype="int32")
            structure_probs = None
            loc_preds = None
            elem_onehots = None
            outputs = None
            alpha = None
文幕地方's avatar
文幕地方 已提交
109
            max_text_length = paddle.to_tensor(self.max_text_length)
110
            for i in range(max_text_length + 1):
M
MissPenguin 已提交
111
                elem_onehots = self._char_to_onehot(
文幕地方's avatar
fix bug  
文幕地方 已提交
112
                    temp_elem, onehot_dim=self.out_channels)
M
MissPenguin 已提交
113 114
                (outputs, hidden), alpha = self.structure_attention_cell(
                    hidden, fea, elem_onehots)
115
                output_hiddens[:, i, :] = outputs
M
MissPenguin 已提交
116 117
                structure_probs_step = self.structure_generator(outputs)
                temp_elem = structure_probs_step.argmax(axis=1, dtype="int32")
118

文幕地方's avatar
文幕地方 已提交
119
            structure_probs = self.structure_generator(output_hiddens)
M
MissPenguin 已提交
120
            structure_probs = F.softmax(structure_probs)
121 122 123
            loc_fea = fea.transpose([0, 2, 1])
            loc_fea = self.loc_fea_trans(loc_fea)
            loc_fea = loc_fea.transpose([0, 2, 1])
文幕地方's avatar
文幕地方 已提交
124
            loc_concat = paddle.concat([output_hiddens, loc_fea], axis=2)
125 126
            loc_preds = self.loc_generator(loc_concat)
            loc_preds = F.sigmoid(loc_preds)
127
        return {'structure_probs': structure_probs, 'loc_preds': loc_preds}
文幕地方's avatar
文幕地方 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


class SLAHead(nn.Layer):
    def __init__(self,
                 in_channels,
                 hidden_size,
                 out_channels=30,
                 max_text_length=500,
                 loc_reg_num=4,
                 fc_decay=0.0,
                 **kwargs):
        """
        @param in_channels: input shape
        @param hidden_size: hidden_size for RNN and Embedding
        @param out_channels: num_classes to rec
        @param max_text_length: max text pred
        """
        super().__init__()
        in_channels = in_channels[-1]
        self.hidden_size = hidden_size
        self.max_text_length = max_text_length
        self.emb = self._char_to_onehot
        self.num_embeddings = out_channels
文幕地方's avatar
文幕地方 已提交
151
        self.loc_reg_num = loc_reg_num
文幕地方's avatar
文幕地方 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

        # structure
        self.structure_attention_cell = AttentionGRUCell(
            in_channels, hidden_size, self.num_embeddings)
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        weight_attr1_1, bias_attr1_1 = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        weight_attr1_2, bias_attr1_2 = get_para_bias_attr(
            l2_decay=fc_decay, k=hidden_size)
        self.structure_generator = nn.Sequential(
            nn.Linear(
                self.hidden_size,
                self.hidden_size,
                weight_attr=weight_attr1_2,
                bias_attr=bias_attr1_2),
            nn.Linear(
                hidden_size,
                out_channels,
                weight_attr=weight_attr,
                bias_attr=bias_attr))
        # loc
        weight_attr1, bias_attr1 = get_para_bias_attr(
            l2_decay=fc_decay, k=self.hidden_size)
        weight_attr2, bias_attr2 = get_para_bias_attr(
            l2_decay=fc_decay, k=self.hidden_size)
        self.loc_generator = nn.Sequential(
            nn.Linear(
                self.hidden_size,
                self.hidden_size,
                weight_attr=weight_attr1,
                bias_attr=bias_attr1),
            nn.Linear(
                self.hidden_size,
                loc_reg_num,
                weight_attr=weight_attr2,
                bias_attr=bias_attr2),
            nn.Sigmoid())

    def forward(self, inputs, targets=None):
        fea = inputs[-1]
        batch_size = fea.shape[0]
        # reshape
        fea = paddle.reshape(fea, [fea.shape[0], fea.shape[1], -1])
        fea = fea.transpose([0, 2, 1])  # (NTC)(batch, width, channels)

        hidden = paddle.zeros((batch_size, self.hidden_size))
文幕地方's avatar
文幕地方 已提交
199 200 201 202
        structure_preds = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.num_embeddings))
        loc_preds = paddle.zeros(
            (batch_size, self.max_text_length + 1, self.loc_reg_num))
203 204
        structure_preds.stop_gradient = True
        loc_preds.stop_gradient = True
文幕地方's avatar
文幕地方 已提交
205 206 207 208 209
        if self.training and targets is not None:
            structure = targets[0]
            for i in range(self.max_text_length + 1):
                hidden, structure_step, loc_step = self._decode(structure[:, i],
                                                                fea, hidden)
文幕地方's avatar
文幕地方 已提交
210 211
                structure_preds[:, i, :] = structure_step
                loc_preds[:, i, :] = loc_step
212
        else:
文幕地方's avatar
文幕地方 已提交
213 214 215 216 217 218 219 220
            pre_chars = paddle.zeros(shape=[batch_size], dtype="int32")
            max_text_length = paddle.to_tensor(self.max_text_length)
            # for export
            loc_step, structure_step = None, None
            for i in range(max_text_length + 1):
                hidden, structure_step, loc_step = self._decode(pre_chars, fea,
                                                                hidden)
                pre_chars = structure_step.argmax(axis=1, dtype="int32")
文幕地方's avatar
文幕地方 已提交
221 222
                structure_preds[:, i, :] = structure_step
                loc_preds[:, i, :] = loc_step
文幕地方's avatar
文幕地方 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        if not self.training:
            structure_preds = F.softmax(structure_preds)
        return {'structure_probs': structure_preds, 'loc_preds': loc_preds}

    def _decode(self, pre_chars, features, hidden):
        """
        Predict table label and coordinates for each step
        @param pre_chars: Table label in previous step
        @param features:
        @param hidden: hidden status in previous step
        @return:
        """
        emb_feature = self.emb(pre_chars)
        # output shape is b * self.hidden_size
        (output, hidden), alpha = self.structure_attention_cell(
            hidden, features, emb_feature)

        # structure
        structure_step = self.structure_generator(output)
        # loc
        loc_step = self.loc_generator(output)
        return hidden, structure_step, loc_step

    def _char_to_onehot(self, input_char):
        input_ont_hot = F.one_hot(input_char, self.num_embeddings)
        return input_ont_hot