paddleocr.cpp 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/args.h>
#include <include/paddleocr.h>

#include "auto_log/autolog.h"
#include <numeric>
#include <sys/stat.h>

namespace PaddleOCR {

PaddleOCR::PaddleOCR() {
  if (FLAGS_det) {
    this->detector_ = new DBDetector(
        FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_max_side_len,
        FLAGS_det_db_thresh, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
        FLAGS_det_db_score_mode, FLAGS_use_dilation, FLAGS_use_tensorrt,
        FLAGS_precision);
  }

  if (FLAGS_cls && FLAGS_use_angle_cls) {
    this->classifier_ = new Classifier(
        FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_cls_thresh,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_cls_batch_num);
  }
  if (FLAGS_rec) {
    this->recognizer_ = new CRNNRecognizer(
        FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_rec_char_dict_path,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
  }
};

void PaddleOCR::det(cv::Mat img, std::vector<OCRPredictResult> &ocr_results,
                    std::vector<double> &times) {
  std::vector<std::vector<std::vector<int>>> boxes;
  std::vector<double> det_times;

  this->detector_->Run(img, boxes, det_times);

  for (int i = 0; i < boxes.size(); i++) {
    OCRPredictResult res;
    res.box = boxes[i];
    ocr_results.push_back(res);
  }

  times[0] += det_times[0];
  times[1] += det_times[1];
  times[2] += det_times[2];
}

void PaddleOCR::rec(std::vector<cv::Mat> img_list,
                    std::vector<OCRPredictResult> &ocr_results,
                    std::vector<double> &times) {
  std::vector<std::string> rec_texts(img_list.size(), "");
  std::vector<float> rec_text_scores(img_list.size(), 0);
  std::vector<double> rec_times;
  this->recognizer_->Run(img_list, rec_texts, rec_text_scores, rec_times);
  // output rec results
  for (int i = 0; i < rec_texts.size(); i++) {
    ocr_results[i].text = rec_texts[i];
    ocr_results[i].score = rec_text_scores[i];
  }
  times[0] += rec_times[0];
  times[1] += rec_times[1];
  times[2] += rec_times[2];
}

void PaddleOCR::cls(std::vector<cv::Mat> img_list,
                    std::vector<OCRPredictResult> &ocr_results,
                    std::vector<double> &times) {
  std::vector<int> cls_labels(img_list.size(), 0);
  std::vector<float> cls_scores(img_list.size(), 0);
  std::vector<double> cls_times;
  this->classifier_->Run(img_list, cls_labels, cls_scores, cls_times);
  // output cls results
  for (int i = 0; i < cls_labels.size(); i++) {
    ocr_results[i].cls_label = cls_labels[i];
    ocr_results[i].cls_score = cls_scores[i];
  }
  times[0] += cls_times[0];
  times[1] += cls_times[1];
  times[2] += cls_times[2];
}

std::vector<std::vector<OCRPredictResult>>
PaddleOCR::ocr(std::vector<cv::String> cv_all_img_names, bool det, bool rec,
               bool cls) {
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
  std::vector<double> time_info_cls = {0, 0, 0};
  std::vector<std::vector<OCRPredictResult>> ocr_results;

  if (!det) {
    std::vector<OCRPredictResult> ocr_result;
    // read image
    std::vector<cv::Mat> img_list;
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: "
                  << cv_all_img_names[i] << endl;
        exit(1);
      }
      img_list.push_back(srcimg);
      OCRPredictResult res;
      ocr_result.push_back(res);
    }
    if (cls && this->classifier_ != nullptr) {
      this->cls(img_list, ocr_result, time_info_cls);
      for (int i = 0; i < img_list.size(); i++) {
        if (ocr_result[i].cls_label % 2 == 1 &&
            ocr_result[i].cls_score > this->classifier_->cls_thresh) {
          cv::rotate(img_list[i], img_list[i], 1);
        }
      }
    }
    if (rec) {
      this->rec(img_list, ocr_result, time_info_rec);
    }
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result_tmp;
      ocr_result_tmp.push_back(ocr_result[i]);
      ocr_results.push_back(ocr_result_tmp);
    }
  } else {
    if (!Utility::PathExists(FLAGS_output) && FLAGS_det) {
      mkdir(FLAGS_output.c_str(), 0777);
    }

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result;
文幕地方's avatar
文幕地方 已提交
147 148 149
      if (!FLAGS_benchmark) {
        cout << "predict img: " << cv_all_img_names[i] << endl;
      }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: "
                  << cv_all_img_names[i] << endl;
        exit(1);
      }
      // det
      this->det(srcimg, ocr_result, time_info_det);
      // crop image
      std::vector<cv::Mat> img_list;
      for (int j = 0; j < ocr_result.size(); j++) {
        cv::Mat crop_img;
        crop_img = Utility::GetRotateCropImage(srcimg, ocr_result[j].box);
        img_list.push_back(crop_img);
      }

      // cls
      if (cls && this->classifier_ != nullptr) {
        this->cls(img_list, ocr_result, time_info_cls);
        for (int i = 0; i < img_list.size(); i++) {
          if (ocr_result[i].cls_label % 2 == 1 &&
              ocr_result[i].cls_score > this->classifier_->cls_thresh) {
            cv::rotate(img_list[i], img_list[i], 1);
          }
        }
      }
      // rec
      if (rec) {
        this->rec(img_list, ocr_result, time_info_rec);
      }
      ocr_results.push_back(ocr_result);
    }
  }
  if (FLAGS_benchmark) {
    this->log(time_info_det, time_info_rec, time_info_cls,
              cv_all_img_names.size());
  }
  return ocr_results;
} // namespace PaddleOCR

void PaddleOCR::log(std::vector<double> &det_times,
                    std::vector<double> &rec_times,
                    std::vector<double> &cls_times, int img_num) {
  if (det_times[0] + det_times[1] + det_times[2] > 0) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, det_times, img_num);
    autolog_det.report();
  }
  if (rec_times[0] + rec_times[1] + rec_times[2] > 0) {
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           rec_times, img_num);
    autolog_rec.report();
  }
  if (cls_times[0] + cls_times[1] + cls_times[2] > 0) {
    AutoLogger autolog_cls("ocr_cls", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_cls_batch_num, "dynamic", FLAGS_precision,
                           cls_times, img_num);
    autolog_cls.report();
  }
}
PaddleOCR::~PaddleOCR() {
  if (this->detector_ != nullptr) {
    delete this->detector_;
  }
  if (this->classifier_ != nullptr) {
    delete this->classifier_;
  }
  if (this->recognizer_ != nullptr) {
    delete this->recognizer_;
  }
};

} // namespace PaddleOCR