local_graph.py 15.7 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/local_graph.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
import paddle.nn as nn
from ppocr.ext_op import RoIAlignRotated


def normalize_adjacent_matrix(A):
    assert A.ndim == 2
    assert A.shape[0] == A.shape[1]

    A = A + np.eye(A.shape[0])
    d = np.sum(A, axis=0)
    d = np.clip(d, 0, None)
    d_inv = np.power(d, -0.5).flatten()
    d_inv[np.isinf(d_inv)] = 0.0
    d_inv = np.diag(d_inv)
    G = A.dot(d_inv).transpose().dot(d_inv)
    return G


def euclidean_distance_matrix(A, B):
    """Calculate the Euclidean distance matrix.

    Args:
        A (ndarray): The point sequence.
        B (ndarray): The point sequence with the same dimensions as A.

    returns:
        D (ndarray): The Euclidean distance matrix.
    """
    assert A.ndim == 2
    assert B.ndim == 2
    assert A.shape[1] == B.shape[1]

    m = A.shape[0]
    n = B.shape[0]

    A_dots = (A * A).sum(axis=1).reshape((m, 1)) * np.ones(shape=(1, n))
    B_dots = (B * B).sum(axis=1) * np.ones(shape=(m, 1))
    D_squared = A_dots + B_dots - 2 * A.dot(B.T)

    zero_mask = np.less(D_squared, 0.0)
    D_squared[zero_mask] = 0.0
    D = np.sqrt(D_squared)
    return D


def feature_embedding(input_feats, out_feat_len):
    """Embed features. This code was partially adapted from
    https://github.com/GXYM/DRRG licensed under the MIT license.

    Args:
        input_feats (ndarray): The input features of shape (N, d), where N is
            the number of nodes in graph, d is the input feature vector length.
        out_feat_len (int): The length of output feature vector.

    Returns:
        embedded_feats (ndarray): The embedded features.
    """
    assert input_feats.ndim == 2
    assert isinstance(out_feat_len, int)
    assert out_feat_len >= input_feats.shape[1]

    num_nodes = input_feats.shape[0]
    feat_dim = input_feats.shape[1]
    feat_repeat_times = out_feat_len // feat_dim
    residue_dim = out_feat_len % feat_dim

    if residue_dim > 0:
        embed_wave = np.array([
            np.power(1000, 2.0 * (j // 2) / feat_repeat_times + 1)
            for j in range(feat_repeat_times + 1)
        ]).reshape((feat_repeat_times + 1, 1, 1))
        repeat_feats = np.repeat(
            np.expand_dims(
                input_feats, axis=0), feat_repeat_times, axis=0)
        residue_feats = np.hstack([
            input_feats[:, 0:residue_dim], np.zeros(
                (num_nodes, feat_dim - residue_dim))
        ])
        residue_feats = np.expand_dims(residue_feats, axis=0)
        repeat_feats = np.concatenate([repeat_feats, residue_feats], axis=0)
        embedded_feats = repeat_feats / embed_wave
        embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
        embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
        embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
            (num_nodes, -1))[:, 0:out_feat_len]
    else:
        embed_wave = np.array([
            np.power(1000, 2.0 * (j // 2) / feat_repeat_times)
            for j in range(feat_repeat_times)
        ]).reshape((feat_repeat_times, 1, 1))
        repeat_feats = np.repeat(
            np.expand_dims(
                input_feats, axis=0), feat_repeat_times, axis=0)
        embedded_feats = repeat_feats / embed_wave
        embedded_feats[:, 0::2] = np.sin(embedded_feats[:, 0::2])
        embedded_feats[:, 1::2] = np.cos(embedded_feats[:, 1::2])
        embedded_feats = np.transpose(embedded_feats, (1, 0, 2)).reshape(
            (num_nodes, -1)).astype(np.float32)

    return embedded_feats


class LocalGraphs:
    def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
                 pooling_scale, pooling_output_size, local_graph_thr):

        assert len(k_at_hops) == 2
        assert all(isinstance(n, int) for n in k_at_hops)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert all(isinstance(n, int) for n in pooling_output_size)
        assert isinstance(local_graph_thr, float)

        self.k_at_hops = k_at_hops
        self.num_adjacent_linkages = num_adjacent_linkages
        self.node_geo_feat_dim = node_geo_feat_len
        self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
        self.local_graph_thr = local_graph_thr

    def generate_local_graphs(self, sorted_dist_inds, gt_comp_labels):
        """Generate local graphs for GCN to predict which instance a text
        component belongs to.

        Args:
            sorted_dist_inds (ndarray): The complete graph node indices, which
                is sorted according to the Euclidean distance.
            gt_comp_labels(ndarray): The ground truth labels define the
                instance to which the text components (nodes in graphs) belong.

        Returns:
            pivot_local_graphs(list[list[int]]): The list of local graph
                neighbor indices of pivots.
            pivot_knns(list[list[int]]): The list of k-nearest neighbor indices
                of pivots.
        """

        assert sorted_dist_inds.ndim == 2
        assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
                gt_comp_labels.shape[0])

        knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
        pivot_local_graphs = []
        pivot_knns = []
        for pivot_ind, knn in enumerate(knn_graph):

            local_graph_neighbors = set(knn)

            for neighbor_ind in knn:
                local_graph_neighbors.update(
                    set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
                                         1]))

            local_graph_neighbors.discard(pivot_ind)
            pivot_local_graph = list(local_graph_neighbors)
            pivot_local_graph.insert(0, pivot_ind)
            pivot_knn = [pivot_ind] + list(knn)

            if pivot_ind < 1:
                pivot_local_graphs.append(pivot_local_graph)
                pivot_knns.append(pivot_knn)
            else:
                add_flag = True
                for graph_ind, added_knn in enumerate(pivot_knns):
                    added_pivot_ind = added_knn[0]
                    added_local_graph = pivot_local_graphs[graph_ind]

                    union = len(
                        set(pivot_local_graph[1:]).union(
                            set(added_local_graph[1:])))
                    intersect = len(
                        set(pivot_local_graph[1:]).intersection(
                            set(added_local_graph[1:])))
                    local_graph_iou = intersect / (union + 1e-8)

                    if (local_graph_iou > self.local_graph_thr and
                            pivot_ind in added_knn and
                            gt_comp_labels[added_pivot_ind] ==
                            gt_comp_labels[pivot_ind] and
                            gt_comp_labels[pivot_ind] != 0):
                        add_flag = False
                        break
                if add_flag:
                    pivot_local_graphs.append(pivot_local_graph)
                    pivot_knns.append(pivot_knn)

        return pivot_local_graphs, pivot_knns

    def generate_gcn_input(self, node_feat_batch, node_label_batch,
                           local_graph_batch, knn_batch, sorted_dist_ind_batch):
        """Generate graph convolution network input data.

        Args:
            node_feat_batch (List[Tensor]): The batched graph node features.
            node_label_batch (List[ndarray]): The batched text component
                labels.
            local_graph_batch (List[List[list[int]]]): The local graph node
                indices of image batch.
            knn_batch (List[List[list[int]]]): The knn graph node indices of
                image batch.
            sorted_dist_ind_batch (list[ndarray]): The node indices sorted
                according to the Euclidean distance.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in
                local graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """
        assert isinstance(node_feat_batch, list)
        assert isinstance(node_label_batch, list)
        assert isinstance(local_graph_batch, list)
        assert isinstance(knn_batch, list)
        assert isinstance(sorted_dist_ind_batch, list)

        num_max_nodes = max([
            len(pivot_local_graph)
            for pivot_local_graphs in local_graph_batch
            for pivot_local_graph in pivot_local_graphs
        ])

        local_graphs_node_feat = []
        adjacent_matrices = []
        pivots_knn_inds = []
        pivots_gt_linkage = []

        for batch_ind, sorted_dist_inds in enumerate(sorted_dist_ind_batch):
            node_feats = node_feat_batch[batch_ind]
            pivot_local_graphs = local_graph_batch[batch_ind]
            pivot_knns = knn_batch[batch_ind]
            node_labels = node_label_batch[batch_ind]

            for graph_ind, pivot_knn in enumerate(pivot_knns):
                pivot_local_graph = pivot_local_graphs[graph_ind]
                num_nodes = len(pivot_local_graph)
                pivot_ind = pivot_local_graph[0]
                node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}

                knn_inds = paddle.to_tensor(
                    [node2ind_map[i] for i in pivot_knn[1:]])
                pivot_feats = node_feats[pivot_ind]
                normalized_feats = node_feats[paddle.to_tensor(
                    pivot_local_graph)] - pivot_feats

                adjacent_matrix = np.zeros(
                    (num_nodes, num_nodes), dtype=np.float32)
                for node in pivot_local_graph:
                    neighbors = sorted_dist_inds[node, 1:
                                                 self.num_adjacent_linkages + 1]
                    for neighbor in neighbors:
                        if neighbor in pivot_local_graph:

                            adjacent_matrix[node2ind_map[node], node2ind_map[
                                neighbor]] = 1
                            adjacent_matrix[node2ind_map[neighbor],
                                            node2ind_map[node]] = 1

                adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
                pad_adjacent_matrix = paddle.zeros(
                    (num_max_nodes, num_max_nodes))
                pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
                    paddle.to_tensor(adjacent_matrix), 'float32')

                pad_normalized_feats = paddle.concat(
                    [
                        normalized_feats, paddle.zeros(
                            (num_max_nodes - num_nodes,
                             normalized_feats.shape[1]))
                    ],
                    axis=0)
                local_graph_labels = node_labels[pivot_local_graph]
                knn_labels = local_graph_labels[knn_inds.numpy()]
                link_labels = ((node_labels[pivot_ind] == knn_labels) &
                               (node_labels[pivot_ind] > 0)).astype(np.int64)
                link_labels = paddle.to_tensor(link_labels)

                local_graphs_node_feat.append(pad_normalized_feats)
                adjacent_matrices.append(pad_adjacent_matrix)
                pivots_knn_inds.append(knn_inds)
                pivots_gt_linkage.append(link_labels)

        local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
        adjacent_matrices = paddle.stack(adjacent_matrices, 0)
        pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
        pivots_gt_linkage = paddle.stack(pivots_gt_linkage, 0)

        return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
                pivots_gt_linkage)

    def __call__(self, feat_maps, comp_attribs):
        """Generate local graphs as GCN input.

        Args:
            feat_maps (Tensor): The feature maps to extract the content
                features of text components.
            comp_attribs (ndarray): The text component attributes.

        Returns:
            local_graphs_node_feat (Tensor): The node features of graph.
            adjacent_matrices (Tensor): The adjacent matrices of local graphs.
            pivots_knn_inds (Tensor): The k-nearest neighbor indices in local
                graph.
            gt_linkage (Tensor): The surpervision signal of GCN for linkage
                prediction.
        """

        assert isinstance(feat_maps, paddle.Tensor)
        assert comp_attribs.ndim == 3
        assert comp_attribs.shape[2] == 8

        sorted_dist_inds_batch = []
        local_graph_batch = []
        knn_batch = []
        node_feat_batch = []
        node_label_batch = []

        for batch_ind in range(comp_attribs.shape[0]):
            num_comps = int(comp_attribs[batch_ind, 0, 0])
            comp_geo_attribs = comp_attribs[batch_ind, :num_comps, 1:7]
            node_labels = comp_attribs[batch_ind, :num_comps, 7].astype(
                np.int32)

            comp_centers = comp_geo_attribs[:, 0:2]
            distance_matrix = euclidean_distance_matrix(comp_centers,
                                                        comp_centers)

            batch_id = np.zeros(
                (comp_geo_attribs.shape[0], 1), dtype=np.float32) * batch_ind
            comp_geo_attribs[:, -2] = np.clip(comp_geo_attribs[:, -2], -1, 1)
            angle = np.arccos(comp_geo_attribs[:, -2]) * np.sign(
                comp_geo_attribs[:, -1])
            angle = angle.reshape((-1, 1))
            rotated_rois = np.hstack(
                [batch_id, comp_geo_attribs[:, :-2], angle])
            rois = paddle.to_tensor(rotated_rois)
            content_feats = self.pooling(feat_maps[batch_ind].unsqueeze(0),
                                         rois)

            content_feats = content_feats.reshape([content_feats.shape[0], -1])
            geo_feats = feature_embedding(comp_geo_attribs,
                                          self.node_geo_feat_dim)
            geo_feats = paddle.to_tensor(geo_feats)
            node_feats = paddle.concat([content_feats, geo_feats], axis=-1)

            sorted_dist_inds = np.argsort(distance_matrix, axis=1)
            pivot_local_graphs, pivot_knns = self.generate_local_graphs(
                sorted_dist_inds, node_labels)

            node_feat_batch.append(node_feats)
            node_label_batch.append(node_labels)
            local_graph_batch.append(pivot_local_graphs)
            knn_batch.append(pivot_knns)
            sorted_dist_inds_batch.append(sorted_dist_inds)

        (node_feats, adjacent_matrices, knn_inds, gt_linkage) = \
            self.generate_gcn_input(node_feat_batch,
                                    node_label_batch,
                                    local_graph_batch,
                                    knn_batch,
                                    sorted_dist_inds_batch)

        return node_feats, adjacent_matrices, knn_inds, gt_linkage