det_drrg_loss.py 8.4 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/losses/drrg_loss.py
"""

import paddle
import paddle.nn.functional as F
from paddle import nn


class DRRGLoss(nn.Layer):
    def __init__(self, ohem_ratio=3.0):
        super().__init__()
        self.ohem_ratio = ohem_ratio
        self.downsample_ratio = 1.0

    def balance_bce_loss(self, pred, gt, mask):
        """Balanced Binary-CrossEntropy Loss.

        Args:
            pred (Tensor): Shape of :math:`(1, H, W)`.
            gt (Tensor): Shape of :math:`(1, H, W)`.
            mask (Tensor): Shape of :math:`(1, H, W)`.

        Returns:
            Tensor: Balanced bce loss.
        """
        assert pred.shape == gt.shape == mask.shape
        assert paddle.all(pred >= 0) and paddle.all(pred <= 1)
        assert paddle.all(gt >= 0) and paddle.all(gt <= 1)
        positive = gt * mask
        negative = (1 - gt) * mask
        positive_count = int(positive.sum())

        if positive_count > 0:
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            positive_loss = paddle.sum(loss * positive)
            negative_loss = loss * negative
            negative_count = min(
                int(negative.sum()), int(positive_count * self.ohem_ratio))
        else:
            positive_loss = paddle.to_tensor(0.0)
            loss = F.binary_cross_entropy(pred, gt, reduction='none')
            negative_loss = loss * negative
            negative_count = 100
        negative_loss, _ = paddle.topk(
            negative_loss.reshape([-1]), negative_count)

        balance_loss = (positive_loss + paddle.sum(negative_loss)) / (
            float(positive_count + negative_count) + 1e-5)

        return balance_loss

    def gcn_loss(self, gcn_data):
        """CrossEntropy Loss from gcn module.

        Args:
            gcn_data (tuple(Tensor, Tensor)): The first is the
                prediction with shape :math:`(N, 2)` and the
                second is the gt label with shape :math:`(m, n)`
                where :math:`m * n = N`.

        Returns:
            Tensor: CrossEntropy loss.
        """
        gcn_pred, gt_labels = gcn_data
        gt_labels = gt_labels.reshape([-1])
        loss = F.cross_entropy(gcn_pred, gt_labels)

        return loss

    def bitmasks2tensor(self, bitmasks, target_sz):
        """Convert Bitmasks to tensor.

        Args:
            bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is
                for one img.
            target_sz (tuple(int, int)): The target tensor of size
                :math:`(H, W)`.

        Returns:
            list[Tensor]: The list of kernel tensors. Each element stands for
            one kernel level.
        """
        batch_size = len(bitmasks)
        results = []

        kernel = []
        for batch_inx in range(batch_size):
            mask = bitmasks[batch_inx]
            # hxw
            mask_sz = mask.shape
            # left, right, top, bottom
            pad = [0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0]]
            mask = F.pad(mask, pad, mode='constant', value=0)
            kernel.append(mask)
        kernel = paddle.stack(kernel)
        results.append(kernel)

        return results

    def forward(self, preds, labels):
        """Compute Drrg loss.
        """

        assert isinstance(preds, tuple)
        gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map = labels[
            1:8]

        downsample_ratio = self.downsample_ratio

        pred_maps, gcn_data = preds
        pred_text_region = pred_maps[:, 0, :, :]
        pred_center_region = pred_maps[:, 1, :, :]
        pred_sin_map = pred_maps[:, 2, :, :]
        pred_cos_map = pred_maps[:, 3, :, :]
        pred_top_height_map = pred_maps[:, 4, :, :]
        pred_bot_height_map = pred_maps[:, 5, :, :]
        feature_sz = pred_maps.shape

        # bitmask 2 tensor
        mapping = {
            'gt_text_mask': paddle.cast(gt_text_mask, 'float32'),
            'gt_center_region_mask':
            paddle.cast(gt_center_region_mask, 'float32'),
            'gt_mask': paddle.cast(gt_mask, 'float32'),
            'gt_top_height_map': paddle.cast(gt_top_height_map, 'float32'),
            'gt_bot_height_map': paddle.cast(gt_bot_height_map, 'float32'),
            'gt_sin_map': paddle.cast(gt_sin_map, 'float32'),
            'gt_cos_map': paddle.cast(gt_cos_map, 'float32')
        }
        gt = {}
        for key, value in mapping.items():
            gt[key] = value
            if abs(downsample_ratio - 1.0) < 1e-2:
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
            else:
                gt[key] = [item.rescale(downsample_ratio) for item in gt[key]]
                gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:])
                if key in ['gt_top_height_map', 'gt_bot_height_map']:
                    gt[key] = [item * downsample_ratio for item in gt[key]]
            gt[key] = [item for item in gt[key]]

        scale = paddle.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8))
        pred_sin_map = pred_sin_map * scale
        pred_cos_map = pred_cos_map * scale

        loss_text = self.balance_bce_loss(
            F.sigmoid(pred_text_region), gt['gt_text_mask'][0],
            gt['gt_mask'][0])

        text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0])
        negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0])
        loss_center_map = F.binary_cross_entropy(
            F.sigmoid(pred_center_region),
            gt['gt_center_region_mask'][0],
            reduction='none')
        if int(text_mask.sum()) > 0:
            loss_center_positive = paddle.sum(loss_center_map *
                                              text_mask) / paddle.sum(text_mask)
        else:
            loss_center_positive = paddle.to_tensor(0.0)
        loss_center_negative = paddle.sum(
            loss_center_map *
            negative_text_mask) / paddle.sum(negative_text_mask)
        loss_center = loss_center_positive + 0.5 * loss_center_negative

        center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0])
        if int(center_mask.sum()) > 0:
            map_sz = pred_top_height_map.shape
            ones = paddle.ones(map_sz, dtype='float32')
            loss_top = F.smooth_l1_loss(
                pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2),
                ones,
                reduction='none')
            loss_bot = F.smooth_l1_loss(
                pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2),
                ones,
                reduction='none')
            gt_height = (
                gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0])
            loss_height = paddle.sum(
                (paddle.log(gt_height + 1) *
                 (loss_top + loss_bot)) * center_mask) / paddle.sum(center_mask)

            loss_sin = paddle.sum(
                F.smooth_l1_loss(
                    pred_sin_map, gt['gt_sin_map'][0],
                    reduction='none') * center_mask) / paddle.sum(center_mask)
            loss_cos = paddle.sum(
                F.smooth_l1_loss(
                    pred_cos_map, gt['gt_cos_map'][0],
                    reduction='none') * center_mask) / paddle.sum(center_mask)
        else:
            loss_height = paddle.to_tensor(0.0)
            loss_sin = paddle.to_tensor(0.0)
            loss_cos = paddle.to_tensor(0.0)

        loss_gcn = self.gcn_loss(gcn_data)

        loss = loss_text + loss_center + loss_height + loss_sin + loss_cos + loss_gcn
        results = dict(
            loss=loss,
            loss_text=loss_text,
            loss_center=loss_center,
            loss_height=loss_height,
            loss_sin=loss_sin,
            loss_cos=loss_cos,
            loss_gcn=loss_gcn)

        return results