pg_postprocess.py 7.7 KB
Newer Older
J
Jethong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))

import numpy as np
from .locality_aware_nms import nms_locality
from ppocr.utils.e2e_utils.extract_textpoint import *
from ppocr.utils.e2e_utils.ski_thin import *
from ppocr.utils.e2e_utils.visual import *
import paddle
import cv2
import time


class PGPostProcess(object):
    """
    The post process for SAST.
    """

    def __init__(self,
                 score_thresh=0.5,
                 nms_thresh=0.2,
                 sample_pts_num=2,
                 shrink_ratio_of_width=0.3,
                 expand_scale=1.0,
                 tcl_map_thresh=0.5,
                 **kwargs):
        self.result_path = ""
        self.valid_set = 'totaltext'
        self.Lexicon_Table = [
            '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C',
            'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
        ]
        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.sample_pts_num = sample_pts_num
        self.shrink_ratio_of_width = shrink_ratio_of_width
        self.expand_scale = expand_scale
        self.tcl_map_thresh = tcl_map_thresh

        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True

    def __call__(self, outs_dict, shape_list):
        p_score, p_border, p_direction, p_char = outs_dict[:4]
        p_score = p_score[0].numpy()
        p_border = p_border[0].numpy()
        p_direction = p_direction[0].numpy()
        p_char = p_char[0].numpy()
        src_h, src_w, ratio_h, ratio_w = shape_list[0]
        if self.valid_set != 'totaltext':
            is_curved = False
        else:
            is_curved = True
        instance_yxs_list = generate_pivot_list(
            p_score,
            p_char,
            p_direction,
            score_thresh=self.score_thresh,
            is_backbone=True,
            is_curved=is_curved)
        p_char = np.expand_dims(p_char, axis=0)
        p_char = paddle.to_tensor(p_char)
        char_seq_idx_set = []
        for i in range(len(instance_yxs_list)):
            gather_info_lod = paddle.to_tensor(instance_yxs_list[i])
            f_char_map = paddle.transpose(p_char, [0, 2, 3, 1])
            featyre_seq = paddle.gather_nd(f_char_map, gather_info_lod)
            featyre_seq = np.expand_dims(featyre_seq.numpy(), axis=0)
            t = len(featyre_seq[0])
            featyre_seq = paddle.to_tensor(featyre_seq)
            l = np.array([[t]]).astype(np.int64)
            length = paddle.to_tensor(l)
            seq_pred = paddle.fluid.layers.ctc_greedy_decoder(
                input=featyre_seq, blank=36, input_length=length)
            seq_pred1 = seq_pred[0].numpy().tolist()[0]
            seq_len = seq_pred[1].numpy()[0][0]
            temp_t = []
            for x in seq_pred1[:seq_len]:
                temp_t.append(x)
            char_seq_idx_set.append(temp_t)
        seq_strs = []
        for char_idx_set in char_seq_idx_set:
            pr_str = ''.join([self.Lexicon_Table[pos] for pos in char_idx_set])
            seq_strs.append(pr_str)
        poly_list = []
        keep_str_list = []
        all_point_list = []
        all_point_pair_list = []
        for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
            if len(yx_center_line) == 1:
                print('the length of tcl point is less than 2, repeat')
                yx_center_line.append(yx_center_line[-1])

            # expand corresponding offset for total-text.
            offset_expand = 1.0
            if self.valid_set == 'totaltext':
                offset_expand = 1.2

            point_pair_list = []
            for batch_id, y, x in yx_center_line:
                offset = p_border[:, y, x].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(
                        offset, axis=1, keepdims=True)
                    expand_length = np.clip(
                        offset_length * (offset_expand - 1),
                        a_min=0.5,
                        a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
                    [ratio_w, ratio_h]).reshape(-1, 2)
                point_pair_list.append(point_pair)

                # for visualization
                all_point_list.append([
                    int(round(x * 4.0 / ratio_w)),
                    int(round(y * 4.0 / ratio_h))
                ])
                all_point_pair_list.append(point_pair.round().astype(np.int32)
                                           .tolist())

            # ndarry: (x, 2)
            detected_poly, pair_length_info = point_pair2poly(point_pair_list)
            print('expand along width. {}'.format(detected_poly.shape))
            detected_poly = expand_poly_along_width(
                detected_poly, shrink_ratio_of_width=0.2)
            detected_poly[:, 0] = np.clip(
                detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(
                detected_poly[:, 1], a_min=0, a_max=src_h)

            if len(keep_str) < 2:
                print('--> too short, {}'.format(keep_str))
                continue

            keep_str_list.append(keep_str)
            if self.valid_set == 'partvgg':
                middle_point = len(detected_poly) // 2
                detected_poly = detected_poly[
                    [0, middle_point - 1, middle_point, -1], :]
                poly_list.append(detected_poly)
            elif self.valid_set == 'totaltext':
                poly_list.append(detected_poly)
            else:
                print('--> Not supported format.')
                exit(-1)
        data = {
            'points': poly_list,
            'strs': keep_str_list,
        }
        # visualization
        # if self.save_visualization:
        #     visualize_e2e_result(im_fn, poly_list, keep_str_list, src_im)
        #     visualize_point_result(im_fn, all_point_list, all_point_pair_list, src_im)

        # save detected boxes
        # txt_dir = (result_path[:-1] if result_path.endswith('/') else result_path) + '_txt_anno'
        # if not os.path.exists(txt_dir):
        #     os.makedirs(txt_dir)
        # res_file = os.path.join(txt_dir, '{}.txt'.format(im_prefix))
        # with open(res_file, 'w') as f:
        #     for i_box, box in enumerate(poly_list):
        #         seq_str = keep_str_list[i_box]
        #         box = np.round(box).astype('int32')
        #         box_str = ','.join(str(s) for s in (box.flatten().tolist()))
        #         f.write('{}\t{}\r\n'.format(box_str, seq_str))
        return data