predict_rec.py 14.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
19 20 21 22 23 24

import cv2
import copy
import numpy as np
import math
import time
25

T
tink2123 已提交
26
import paddle.fluid as fluid
27 28 29 30 31

import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
L
LDOUBLEV 已提交
32 33 34 35 36
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
W
wangjiawei04 已提交
37
        if args.use_pdserving is False:
W
wangjiawei04 已提交
38 39
            self.predictor, self.input_tensor, self.output_tensors =\
                utility.create_predictor(args, mode="rec")
40
            self.use_zero_copy_run = args.use_zero_copy_run
41
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
D
dyning 已提交
42
        self.character_type = args.rec_char_type
43
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
44
        self.rec_algorithm = args.rec_algorithm
T
tink2123 已提交
45
        self.text_len = args.max_text_length
T
tink2123 已提交
46 47
        char_ops_params = {
            "character_type": args.rec_char_type,
48
            "character_dict_path": args.rec_char_dict_path,
T
tink2123 已提交
49 50
            "use_space_char": args.use_space_char,
            "max_text_length": args.max_text_length
T
tink2123 已提交
51
        }
T
tink2123 已提交
52
        if self.rec_algorithm in ["CRNN", "Rosetta", "STAR-Net"]:
T
tink2123 已提交
53
            char_ops_params['loss_type'] = 'ctc'
T
tink2123 已提交
54
            self.loss_type = 'ctc'
T
tink2123 已提交
55
        elif self.rec_algorithm == "RARE":
T
tink2123 已提交
56
            char_ops_params['loss_type'] = 'attention'
T
tink2123 已提交
57
            self.loss_type = 'attention'
T
tink2123 已提交
58 59 60
        elif self.rec_algorithm == "SRN":
            char_ops_params['loss_type'] = 'srn'
            self.loss_type = 'srn'
L
LDOUBLEV 已提交
61 62
        self.char_ops = CharacterOps(char_ops_params)

T
tink2123 已提交
63
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
64
        imgC, imgH, imgW = self.rec_image_shape
65
        assert imgC == img.shape[2]
T
tink2123 已提交
66
        wh_ratio = max(max_wh_ratio, imgW * 1.0 / imgH)
67
        if self.character_type == "ch":
T
tink2123 已提交
68
            imgW = int((32 * wh_ratio))
69
        h, w = img.shape[:2]
70 71 72 73 74
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
T
tink2123 已提交
75
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
76 77 78 79 80 81 82 83
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

T
tink2123 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length,
                         char_num):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self,
                          img,
                          image_shape,
                          num_heads,
                          max_text_length,
                          char_ops=None):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]
        char_num = char_ops.get_char_num()

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length, char_num)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

L
LDOUBLEV 已提交
161 162
    def __call__(self, img_list):
        img_num = len(img_list)
163
        # Calculate the aspect ratio of all text bars
164 165 166
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
167
        # Sorting can speed up the recognition process
168 169
        indices = np.argsort(np.array(width_list))

T
tink2123 已提交
170
        #rec_res = []
171
        rec_res = [['', 0.0]] * img_num
172
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
173 174 175 176
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
T
tink2123 已提交
177
            max_wh_ratio = 0
L
LDOUBLEV 已提交
178
            for ino in range(beg_img_no, end_img_no):
179 180
                # h, w = img_list[ino].shape[0:2]
                h, w = img_list[indices[ino]].shape[0:2]
181
                wh_ratio = w * 1.0 / h
T
tink2123 已提交
182
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
183
            for ino in range(beg_img_no, end_img_no):
T
tink2123 已提交
184 185
                if self.loss_type != "srn":
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
T
tink2123 已提交
186
                                                    max_wh_ratio)
T
tink2123 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.process_image_srn(img_list[indices[ino]],
                                                      self.rec_image_shape, 8,
                                                      25, self.char_ops)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])

            norm_img_batch = np.concatenate(norm_img_batch, axis=0)
T
tink2123 已提交
204 205 206
            norm_img_batch = norm_img_batch.copy()

            if self.loss_type == "srn":
207
                starttime = time.time()
T
tink2123 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)
                starttime = time.time()

                norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                encoder_word_pos_list = fluid.core.PaddleTensor(
                    encoder_word_pos_list)
                gsrm_word_pos_list = fluid.core.PaddleTensor(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = fluid.core.PaddleTensor(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch, encoder_word_pos_list,
                    gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list,
                    gsrm_word_pos_list
                ]

                self.predictor.run(inputs)
            else:
233 234 235 236 237 238 239
                starttime = time.time()
                if self.use_zero_copy_run:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.zero_copy_run()
                else:
                    norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
                    self.predictor.run([norm_img_batch])
T
tink2123 已提交
240

T
tink2123 已提交
241
            if self.loss_type == "ctc":
T
tink2123 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
L
fix bug  
LDOUBLEV 已提交
259
                    if len(valid_ind) == 0:
260
                        continue
L
LDOUBLEV 已提交
261
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
262 263
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            elif self.loss_type == 'srn':
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                probs = self.output_tensors[1].copy_to_cpu()
                char_num = self.char_ops.get_char_num()
                preds = rec_idx_batch.reshape(-1)
                elapse = time.time() - starttime
                predict_time += elapse
                total_preds = preds.copy()
                for ino in range(int(len(rec_idx_batch) / self.text_len)):
                    preds = total_preds[ino * self.text_len:(ino + 1) *
                                        self.text_len]
                    ind = np.argmax(probs, axis=1)
                    valid_ind = np.where(preds != int(char_num - 1))[0]
                    if len(valid_ind) == 0:
                        continue
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    preds = preds[:valid_ind[-1] + 1]
                    preds_text = self.char_ops.decode(preds)

                    rec_res[indices[beg_img_no + ino]] = [preds_text, score]
T
tink2123 已提交
284 285 286
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
T
tink2123 已提交
287 288
                elapse = time.time() - starttime
                predict_time += elapse
T
tink2123 已提交
289 290 291 292 293 294 295 296 297
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
298 299
                    # rec_res.append([preds_text, score])
                    rec_res[indices[beg_img_no + rno]] = [preds_text, score]
T
tink2123 已提交
300

L
LDOUBLEV 已提交
301 302 303
        return rec_res, predict_time


304
def main(args):
D
dyning 已提交
305
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
306 307 308 309
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
L
LDOUBLEV 已提交
310 311 312
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
313 314 315 316 317
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
T
tink2123 已提交
318

T
tink2123 已提交
319 320
    try:
        rec_res, predict_time = text_recognizer(img_list)
T
tink2123 已提交
321 322
    except Exception as e:
        print(e)
T
tink2123 已提交
323
        logger.info(
T
tink2123 已提交
324
            "ERROR!!!! \n"
W
wangjiawei04 已提交
325
            "Please read the FAQ: https://github.com/PaddlePaddle/PaddleOCR#faq \n"
T
tink2123 已提交
326 327
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
T
tink2123 已提交
328
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
T
tink2123 已提交
329
        exit()
L
LDOUBLEV 已提交
330 331 332 333
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))
334 335 336 337


if __name__ == "__main__":
    main(utility.parse_args())