angle_class_en.md 5.9 KB
Newer Older
1
# Text Direction Classification
W
WenmuZhou 已提交
2

3 4 5 6 7 8 9 10 11
- [1. Method Introduction](#method-introduction)
- [2. Data Preparation](#data-preparation)
- [3. Training](#training)
- [4. Evaluation](#evaluation)
- [5. Prediction](#prediction)

<a name="method-introduction"></a>

## 1. Method Introduction
W
WenmuZhou 已提交
12 13 14
The angle classification is used in the scene where the image is not 0 degrees. In this scene, it is necessary to perform a correction operation on the text line detected in the picture. In the PaddleOCR system,
The text line image obtained after text detection is sent to the recognition model after affine transformation. At this time, only a 0 and 180 degree angle classification of the text is required, so the built-in PaddleOCR text angle classifier **only supports 0 and 180 degree classification**. If you want to support more angles, you can modify the algorithm yourself to support.

W
WenmuZhou 已提交
15 16 17
Example of 0 and 180 degree data samples:

![](../imgs_results/angle_class_example.jpg)
W
WenmuZhou 已提交
18

19 20 21
<a name="data-preparation"></a>
## 2. Data Preparation

W
WenmuZhou 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data/cls`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/cls/dataset
```

please refer to the following to organize your data.

- Training set

First put the training images in the same folder (train_images), and use a txt file (cls_gt_train.txt) to store the image path and label.

* Note: by default, the image path and image label are split with `\t`, if you use other methods to split, it will cause training error

0 and 180 indicate that the angle of the image is 0 degrees and 180 degrees, respectively.

```
" Image file name           Image annotation "

Z
zhoujun 已提交
43 44
train/word_001.jpg   0
train/word_002.jpg   180
W
WenmuZhou 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
```

The final training set should have the following file structure:

```
|-train_data
    |-cls
        |- cls_gt_train.txt
        |- train
            |- word_001.png
            |- word_002.jpg
            |- word_003.jpg
            | ...
```

- Test set

Similar to the training set, the test set also needs to be provided a folder
containing all images (test) and a cls_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
    |-cls
        |- cls_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
75 76
<a name="training"></a>
## 3. Training
Z
zhoujun 已提交
77
Write the prepared txt file and image folder path into the configuration file under the `Train/Eval.dataset.label_file_list` and `Train/Eval.dataset.data_dir` fields, the absolute path of the image consists of the `Train/Eval.dataset.data_dir` field and the image name recorded in the txt file.
W
WenmuZhou 已提交
78 79 80 81 82 83 84 85

PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.

Start training:

```
# Set PYTHONPATH path
export PYTHONPATH=$PYTHONPATH:.
86
# GPU training Support single card and multi-card training, specify the card number through --gpus.
W
WenmuZhou 已提交
87
# Start training, the following command has been written into the train.sh file, just modify the configuration file path in the file
W
WenmuZhou 已提交
88
python3 -m paddle.distributed.launch --gpus '0,1,2,3,4,5,6,7'  tools/train.py -c configs/cls/cls_mv3.yml
W
WenmuZhou 已提交
89 90 91 92
```

- Data Augmentation

W
WenmuZhou 已提交
93
PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, Please uncomment the `RecAug` and `RandAugment` fields under `Train.dataset.transforms` in the configuration file.
W
WenmuZhou 已提交
94 95 96 97

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, RandAugment.

Except for RandAugment, each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to:
W
WenmuZhou 已提交
98
[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)
W
WenmuZhou 已提交
99
[randaugment.py](../../ppocr/data/imaug/randaugment.py)
W
WenmuZhou 已提交
100 101 102 103


- Training

W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112 113 114
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/cls/cls_mv3.yml` to set the evaluation frequency. By default, it is evaluated every 1000 iter. The following content will be saved during training:
```bash
├── best_accuracy.pdopt # Optimizer parameters for the best model
├── best_accuracy.pdparams # Parameters of the best model
├── best_accuracy.states # Metric info and epochs of the best model
├── config.yml # Configuration file for this experiment
├── latest.pdopt # Optimizer parameters for the latest model
├── latest.pdparams # Parameters of the latest model
├── latest.states # Metric info and epochs of the latest model
└── train.log # Training log
```
W
WenmuZhou 已提交
115 116 117 118 119

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

**Note that the configuration file for prediction/evaluation must be consistent with the training.**

120 121
<a name="evaluation"></a>
## 4. Evaluation
W
WenmuZhou 已提交
122

W
WenmuZhou 已提交
123
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/cls/cls_mv3.yml` file.
W
WenmuZhou 已提交
124 125 126 127 128 129

```
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
130 131
<a name="prediction"></a>
## 5. Prediction
W
WenmuZhou 已提交
132 133 134 135 136

* Training engine prediction

Using the model trained by paddleocr, you can quickly get prediction through the following script.

W
WenmuZhou 已提交
137
Use `Global.infer_img` to specify the path of the predicted picture or folder, and use `Global.checkpoints` to specify the weight:
W
WenmuZhou 已提交
138 139 140

```
# Predict English results
W
WenmuZhou 已提交
141
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words_en/word_10.png
W
WenmuZhou 已提交
142 143 144 145
```

Input image:

W
WenmuZhou 已提交
146
![](../imgs_words_en/word_10.png)
W
WenmuZhou 已提交
147 148 149 150

Get the prediction result of the input image:

```
W
WenmuZhou 已提交
151 152
infer_img: doc/imgs_words_en/word_10.png
     result: ('0', 0.9999995)
W
WenmuZhou 已提交
153
```