test.sh 7.0 KB
Newer Older
L
LDOUBLEV 已提交
1
#!/bin/bash 
L
LDOUBLEV 已提交
2 3 4
# Usage:
# bash test/test.sh ./test/params.txt 'lite_train_infer'

L
LDOUBLEV 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17
FILENAME=$1

# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset 
wget -nc -P  ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
if [ ${MODE} = "lite_train_infer" ];then
    # pretrain lite train data
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
    cd ./train_data/ && tar xf icdar2015_lite.tar && 
    ln -s ./icdar2015_lite ./icdar2015
    cd ../
L
LDOUBLEV 已提交
18 19
    epoch=10
    eval_batch_step=10
L
LDOUBLEV 已提交
20 21 22 23
elif [ ${MODE} = "whole_train_infer" ];then
    rm -rf ./train_data/icdar2015
    wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
    cd ./train_data/ && tar xf icdar2015.tar && cd ../
L
LDOUBLEV 已提交
24 25
    epoch=300
    eval_batch_step=200
L
LDOUBLEV 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
else
    echo "Do Nothing"
fi


dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
IFS=$'\n'
# The training params
train_model_list=$(func_parser "${lines[0]}")
gpu_list=$(func_parser "${lines[1]}")
auto_cast_list=$(func_parser "${lines[2]}")
slim_trainer_list=$(func_parser "${lines[3]}")
python=$(func_parser "${lines[4]}")
# inference params
inference=$(func_parser "${lines[5]}")
devices=$(func_parser "${lines[6]}")
use_mkldnn_list=$(func_parser "${lines[7]}")
cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list=$(func_parser "${lines[9]}")
gpu_trt_list=$(func_parser "${lines[10]}")
gpu_precision_list=$(func_parser "${lines[11]}")
L
LDOUBLEV 已提交
57
img_dir="./train_data/icdar2015/text_localization/ch4_test_images/"
L
LDOUBLEV 已提交
58
# train superparameters
L
LDOUBLEV 已提交
59 60
#epoch=$(func_parser "${lines[12]}")
#checkpoints=$(func_parser "${lines[13]}")
L
LDOUBLEV 已提交
61 62 63


for train_model in ${train_model_list[*]}; do 
L
LDOUBLEV 已提交
64
    if [ ${train_model} = "ocr_det" ];then
L
LDOUBLEV 已提交
65 66
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
L
LDOUBLEV 已提交
67
    elif [ ${train_model} = "ocr_rec" ];then
L
LDOUBLEV 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        model_name="rec"
        yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
    else
        model_name="det"
        yml_file="configs/det/det_mv3_db.yml"
    fi
    IFS="|"
    for gpu in ${gpu_list[*]}; do
        use_gpu=True
        if [ ${gpu} = "-1" ];then
            lanuch=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            launch=""
        else
            launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}"
        fi
        # echo "model_name: ${model_name}  yml_file: ${yml_file}   launch: ${launch}   gpu: ${gpu}" 
        for auto_cast in ${auto_cast_list[*]}; do 
            for slim_trainer in ${slim_trainer_list[*]}; do 
                if [ ${slim_trainer} = "norm" ]; then
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                elif [ ${slim_trainer} = "quant" ]; then
                    trainer="deploy/slim/quantization/quant.py"
                    export_model="deploy/slim/quantization/export_model.py"
                elif [ ${slim_trainer} = "prune" ]; then
                    trainer="deploy/slim/prune/sensitivity_anal.py"
                    export_model="deploy/slim/prune/export_prune_model.py"
                elif [ ${slim_trainer} = "distill" ]; then
                    trainer="deploy/slim/distill/train_dml.py"
                    export_model="deploy/slim/distill/export_distill_model.py"
                else
                    trainer="tools/train.py"
                    export_model="tools/export_model.py"
                fi
                # dataset="Train.dataset.data_dir=${train_dir}  Train.dataset.label_file_list=${train_label_file}  Eval.dataset.data_dir=${eval_dir} Eval.dataset.label_file_list=${eval_label_file}"
                save_log=${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}
L
LDOUBLEV 已提交
106
                ${python}  ${launch}  ${trainer}  -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast}  Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu}
L
LDOUBLEV 已提交
107
                ${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/best_accuracy Global.save_inference_dir=${save_log}/export_inference/ 
L
LDOUBLEV 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120
                if [ "${model_name}" = "det" ]; then 
                    export rec_batch_size_list=( "1" )
                    inference="tools/infer/predict_det.py"
                elif [ "${model_name}" = "rec" ]; then
                    inference="tools/infer/predict_rec.py"
                fi
                # inference 
                for device in ${devices[*]}; do 
                    if [ ${device} = "cpu" ]; then
                        for use_mkldnn in ${use_mkldnn_list[*]}; do
                            for threads in ${cpu_threads_list[*]}; do
                                for rec_batch_size in ${rec_batch_size_list[*]}; do    
                                    echo ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  --save_log_path=${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
L
LDOUBLEV 已提交
121
                                    ${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir}  --image_dir=${img_dir}  2>&1 | tee ${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log
L
LDOUBLEV 已提交
122 123 124 125 126 127 128 129 130 131 132
                                done
                            done
                        done
                    else 
                        for use_trt in ${gpu_trt_list[*]}; do
                            for precision in ${gpu_precision_list[*]}; do
                                if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                                    continue
                                fi
                                for rec_batch_size in ${rec_batch_size_list[*]}; do
                                    # echo "${model_name}  ${det_model_dir} ${rec_model_dir}, use_trt: ${use_trt}   use_fp16: ${use_fp16}"
L
LDOUBLEV 已提交
133
                                    ${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt}  --precision=${precision} --benchmark=True --det_model_dir=${save_log}/export_inference/ --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log
L
LDOUBLEV 已提交
134 135 136 137 138 139 140 141 142
                                done
                            done
                        done
                    fi
                done
            done
        done
    done
done