pren_fpn.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Code is refer from:
https://github.com/RuijieJ/pren/blob/main/Nets/Aggregation.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F


class PoolAggregate(nn.Layer):
    def __init__(self, n_r, d_in, d_middle=None, d_out=None):
        super(PoolAggregate, self).__init__()
        if not d_middle:
            d_middle = d_in
        if not d_out:
            d_out = d_in

        self.d_in = d_in
        self.d_middle = d_middle
        self.d_out = d_out
        self.act = nn.Swish()

        self.n_r = n_r
        self.aggs = self._build_aggs()

    def _build_aggs(self):
        aggs = []
        for i in range(self.n_r):
            aggs.append(
                self.add_sublayer(
                    '{}'.format(i),
                    nn.Sequential(
                        ('conv1', nn.Conv2D(
                            self.d_in, self.d_middle, 3, 2, 1, bias_attr=False)
                         ), ('bn1', nn.BatchNorm(self.d_middle)),
                        ('act', self.act), ('conv2', nn.Conv2D(
                            self.d_middle, self.d_out, 3, 2, 1, bias_attr=False
                        )), ('bn2', nn.BatchNorm(self.d_out)))))
        return aggs

    def forward(self, x):
        b = x.shape[0]
        outs = []
        for agg in self.aggs:
            y = agg(x)
            p = F.adaptive_avg_pool2d(y, 1)
            outs.append(p.reshape((b, 1, self.d_out)))
        out = paddle.concat(outs, 1)
        return out


class WeightAggregate(nn.Layer):
    def __init__(self, n_r, d_in, d_middle=None, d_out=None):
        super(WeightAggregate, self).__init__()
        if not d_middle:
            d_middle = d_in
        if not d_out:
            d_out = d_in

        self.n_r = n_r
        self.d_out = d_out
        self.act = nn.Swish()

        self.conv_n = nn.Sequential(
            ('conv1', nn.Conv2D(
                d_in, d_in, 3, 1, 1,
                bias_attr=False)), ('bn1', nn.BatchNorm(d_in)),
            ('act1', self.act), ('conv2', nn.Conv2D(
                d_in, n_r, 1, bias_attr=False)), ('bn2', nn.BatchNorm(n_r)),
            ('act2', nn.Sigmoid()))
        self.conv_d = nn.Sequential(
            ('conv1', nn.Conv2D(
                d_in, d_middle, 3, 1, 1,
                bias_attr=False)), ('bn1', nn.BatchNorm(d_middle)),
            ('act1', self.act), ('conv2', nn.Conv2D(
                d_middle, d_out, 1,
                bias_attr=False)), ('bn2', nn.BatchNorm(d_out)))

    def forward(self, x):
        b, _, h, w = x.shape

        hmaps = self.conv_n(x)
        fmaps = self.conv_d(x)
        r = paddle.bmm(
            hmaps.reshape((b, self.n_r, h * w)),
            fmaps.reshape((b, self.d_out, h * w)).transpose((0, 2, 1)))
        return r


class GCN(nn.Layer):
    def __init__(self, d_in, n_in, d_out=None, n_out=None, dropout=0.1):
        super(GCN, self).__init__()
        if not d_out:
            d_out = d_in
        if not n_out:
            n_out = d_in

        self.conv_n = nn.Conv1D(n_in, n_out, 1)
        self.linear = nn.Linear(d_in, d_out)
        self.dropout = nn.Dropout(dropout)
        self.act = nn.Swish()

    def forward(self, x):
        x = self.conv_n(x)
        x = self.dropout(self.linear(x))
        return self.act(x)


class PRENFPN(nn.Layer):
    def __init__(self, in_channels, n_r, d_model, max_len, dropout):
        super(PRENFPN, self).__init__()
        assert len(in_channels) == 3, "in_channels' length must be 3."
        c1, c2, c3 = in_channels  # the depths are from big to small
        # build fpn
        assert d_model % 3 == 0, "{} can't be divided by 3.".format(d_model)
        self.agg_p1 = PoolAggregate(n_r, c1, d_out=d_model // 3)
        self.agg_p2 = PoolAggregate(n_r, c2, d_out=d_model // 3)
        self.agg_p3 = PoolAggregate(n_r, c3, d_out=d_model // 3)

        self.agg_w1 = WeightAggregate(n_r, c1, 4 * c1, d_model // 3)
        self.agg_w2 = WeightAggregate(n_r, c2, 4 * c2, d_model // 3)
        self.agg_w3 = WeightAggregate(n_r, c3, 4 * c3, d_model // 3)

        self.gcn_pool = GCN(d_model, n_r, d_model, max_len, dropout)
        self.gcn_weight = GCN(d_model, n_r, d_model, max_len, dropout)

        self.out_channels = d_model

    def forward(self, inputs):
        f3, f5, f7 = inputs

        rp1 = self.agg_p1(f3)
        rp2 = self.agg_p2(f5)
        rp3 = self.agg_p3(f7)
        rp = paddle.concat([rp1, rp2, rp3], 2)  # [b,nr,d]

        rw1 = self.agg_w1(f3)
        rw2 = self.agg_w2(f5)
        rw3 = self.agg_w3(f7)
        rw = paddle.concat([rw1, rw2, rw3], 2)  # [b,nr,d]

        y1 = self.gcn_pool(rp)
        y2 = self.gcn_weight(rw)
        y = 0.5 * (y1 + y2)
        return y  # [b,max_len,d]