combined_loss.py 2.3 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss
L
LDOUBLEV 已提交
20
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


class CombinedLoss(nn.Layer):
    """
    CombinedLoss:
        a combionation of loss function
    """

    def __init__(self, loss_config_list=None):
        super().__init__()
        self.loss_func = []
        self.loss_weight = []
        assert isinstance(loss_config_list, list), (
            'operator config should be a list')
        for config in loss_config_list:
            assert isinstance(config,
                              dict) and len(config) == 1, "yaml format error"
            name = list(config)[0]
            param = config[name]
            assert "weight" in param, "weight must be in param, but param just contains {}".format(
                param.keys())
            self.loss_weight.append(param.pop("weight"))
            self.loss_func.append(eval(name)(**param))

    def forward(self, input, batch, **kargs):
        loss_dict = {}
L
LDOUBLEV 已提交
47
        loss_all = 0.
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52
        for idx, loss_func in enumerate(self.loss_func):
            loss = loss_func(input, batch, **kargs)
            if isinstance(loss, paddle.Tensor):
                loss = {"loss_{}_{}".format(str(loss), idx): loss}
            weight = self.loss_weight[idx]
L
LDOUBLEV 已提交
53 54 55
            for key in loss:
                if key == "loss":
                    loss_all += loss[key] * weight
L
LDOUBLEV 已提交
56 57 58
                else:
                    loss["{}_{}".format(key, idx)] = loss[key]
                    # loss[f"{key}_{idx}"] = loss[key]
littletomatodonkey's avatar
littletomatodonkey 已提交
59
            loss_dict.update(loss)
L
LDOUBLEV 已提交
60
        loss_dict["loss"] = loss_all
littletomatodonkey's avatar
littletomatodonkey 已提交
61
        return loss_dict