test.sh 26.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2
#!/bin/bash
FILENAME=$1
M
MissPenguin 已提交
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
L
LDOUBLEV 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
L
LDOUBLEV 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
L
LDOUBLEV 已提交
52
            #echo $(func_set_params "${mode}" "${value}")
L
LDOUBLEV 已提交
53
            echo $value
L
LDOUBLEV 已提交
54 55 56 57 58 59
            break
        fi
        IFS="|"
    done
    echo ${res}
}
L
LDOUBLEV 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
L
LDOUBLEV 已提交
76 77 78 79 80
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
L
LDOUBLEV 已提交
81
epoch_num=$(func_parser_params "${lines[6]}")
L
LDOUBLEV 已提交
82 83
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
L
LDOUBLEV 已提交
84
train_batch_value=$(func_parser_params "${lines[8]}")
L
LDOUBLEV 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
L
LDOUBLEV 已提交
103
trainer_key2=$(func_parser_key "${lines[20]}")
L
LDOUBLEV 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
T
tink2123 已提交
147
# parser serving
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
trans_model_py=$(func_parser_value "${lines[67]}")
infer_model_dir_key=$(func_parser_key "${lines[68]}")
infer_model_dir_value=$(func_parser_value "${lines[68]}")
model_filename_key=$(func_parser_key "${lines[69]}")
model_filename_value=$(func_parser_value "${lines[69]}")
params_filename_key=$(func_parser_key "${lines[70]}")
params_filename_value=$(func_parser_value "${lines[70]}")
serving_server_key=$(func_parser_key "${lines[71]}")
serving_server_value=$(func_parser_value "${lines[71]}")
serving_client_key=$(func_parser_key "${lines[72]}")
serving_client_value=$(func_parser_value "${lines[72]}")
serving_dir_value=$(func_parser_value "${lines[73]}")
web_service_py=$(func_parser_value "${lines[74]}")
web_use_gpu_key=$(func_parser_key "${lines[75]}")
web_use_gpu_list=$(func_parser_value "${lines[75]}")
web_use_mkldnn_key=$(func_parser_key "${lines[76]}")
web_use_mkldnn_list=$(func_parser_value "${lines[76]}")
web_cpu_threads_key=$(func_parser_key "${lines[77]}")
web_cpu_threads_list=$(func_parser_value "${lines[77]}")
web_use_trt_key=$(func_parser_key "${lines[78]}")
web_use_trt_list=$(func_parser_value "${lines[78]}")
web_precision_key=$(func_parser_key "${lines[79]}")
web_precision_list=$(func_parser_value "${lines[79]}")
pipeline_py=$(func_parser_value "${lines[80]}")

L
LDOUBLEV 已提交
173

M
refine  
MissPenguin 已提交
174 175
if [ ${MODE} = "cpp_infer" ]; then
    # parser cpp inference model 
M
refine  
MissPenguin 已提交
176 177
    cpp_infer_model_dir_list=$(func_parser_value "${lines[53]}")
    cpp_infer_is_quant=$(func_parser_value "${lines[54]}")
M
refine  
MissPenguin 已提交
178
    # parser cpp inference 
M
refine  
MissPenguin 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    inference_cmd=$(func_parser_value "${lines[55]}")
    cpp_use_gpu_key=$(func_parser_key "${lines[56]}")
    cpp_use_gpu_list=$(func_parser_value "${lines[56]}")
    cpp_use_mkldnn_key=$(func_parser_key "${lines[57]}")
    cpp_use_mkldnn_list=$(func_parser_value "${lines[57]}")
    cpp_cpu_threads_key=$(func_parser_key "${lines[58]}")
    cpp_cpu_threads_list=$(func_parser_value "${lines[58]}")
    cpp_batch_size_key=$(func_parser_key "${lines[59]}")
    cpp_batch_size_list=$(func_parser_value "${lines[59]}")
    cpp_use_trt_key=$(func_parser_key "${lines[60]}")
    cpp_use_trt_list=$(func_parser_value "${lines[60]}")
    cpp_precision_key=$(func_parser_key "${lines[61]}")
    cpp_precision_list=$(func_parser_value "${lines[61]}")
    cpp_infer_model_key=$(func_parser_key "${lines[62]}")
    cpp_image_dir_key=$(func_parser_key "${lines[63]}")
    cpp_infer_img_dir=$(func_parser_value "${lines[63]}")
M
MissPenguin 已提交
195 196
    cpp_infer_key1=$(func_parser_key "${lines[64]}")
    cpp_infer_value1=$(func_parser_value "${lines[64]}")
M
refine  
MissPenguin 已提交
197 198
    cpp_benchmark_key=$(func_parser_key "${lines[65]}")
    cpp_benchmark_value=$(func_parser_value "${lines[65]}")
M
refine  
MissPenguin 已提交
199
fi
M
MissPenguin 已提交
200 201


L
LDOUBLEV 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
L
LDOUBLEV 已提交
217
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
L
LDOUBLEV 已提交
218
            for use_mkldnn in ${use_mkldnn_list[*]}; do
L
LDOUBLEV 已提交
219 220 221
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
L
LDOUBLEV 已提交
222 223 224 225 226
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
227 228 229
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
230
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
D
Double_V 已提交
231
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
232
                        eval $command
D
Double_V 已提交
233 234 235
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
L
LDOUBLEV 已提交
236 237 238
                    done
                done
            done
L
LDOUBLEV 已提交
239
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
L
LDOUBLEV 已提交
240 241
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
242 243 244
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
245
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
L
LDOUBLEV 已提交
246 247
                        continue
                    fi
248
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
L
LDOUBLEV 已提交
249 250 251 252 253 254
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
L
LDOUBLEV 已提交
255 256 257 258
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
L
LDOUBLEV 已提交
259 260
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
L
LDOUBLEV 已提交
261
                        eval $command
D
Double_V 已提交
262 263 264 265
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
L
LDOUBLEV 已提交
266 267 268
                    done
                done
            done
L
LDOUBLEV 已提交
269
        else
270
            echo "Does not support hardware other than CPU and GPU Currently!"
L
LDOUBLEV 已提交
271 272 273
        fi
    done
}
T
tink2123 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
function func_serving(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    # pdserving
    set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
    set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
    set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
    set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
    set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
    trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
    eval $trans_model_cmd
    cd ${serving_dir_value}
    echo $PWD
T
tink2123 已提交
289 290
    unset https_proxy
    unset http_proxy
T
tink2123 已提交
291 292 293 294 295 296 297 298 299 300
    for use_gpu in ${web_use_gpu_list[*]}; do
        echo ${ues_gpu}
        if [ ${use_gpu} = "null" ]; then
            for use_mkldnn in ${web_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ]; then
                    continue
                fi
                for threads in ${web_cpu_threads_list[*]}; do
                      _save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
                      set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
T
tink2123 已提交
301
                      web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &"
T
tink2123 已提交
302
                      eval $web_service_cmd
T
tink2123 已提交
303 304 305 306 307 308 309 310 311 312
                      sleep 2s
                      pipeline_cmd="${python} ${pipeline_py}"
                      eval $pipeline_cmd
                      last_status=${PIPESTATUS[0]}
                      eval "cat ${_save_log_path}"
                      status_check $last_status "${pipeline_cmd}" "${status_log}"
                      PID=$!
                      kill $PID
                      sleep 2s
                      ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
T
tink2123 已提交
313 314 315 316 317 318 319 320 321 322 323
                done
            done
        elif [ ${use_gpu} = "0" ]; then
            for use_trt in ${web_use_trt_list[*]}; do
                for precision in ${web_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
T
tink2123 已提交
324
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
T
tink2123 已提交
325 326 327 328 329
                        continue
                    fi
                    _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
                    set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
                    set_precision=$(func_set_params "${web_precision_key}" "${precision}")
T
tink2123 已提交
330
                    web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & "
T
tink2123 已提交
331
                    eval $web_service_cmd
T
tink2123 已提交
332 333 334 335 336 337 338 339 340 341
                    sleep 2s
                    pipeline_cmd="${python} ${pipeline_py}"
                    eval $pipeline_cmd
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
                    status_check $last_status "${pipeline_cmd}" "${status_log}"
                    PID=$!
                    kill $PID
                    sleep 2s
                    ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
T
tink2123 已提交
342 343 344 345 346 347 348
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}
L
LDOUBLEV 已提交
349

M
MissPenguin 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
function func_cpp_inference(){
    IFS='|'
    _script=$1
    _model_dir=$2
    _log_path=$3
    _img_dir=$4
    _flag_quant=$5
    # inference 
    for use_gpu in ${cpp_use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpp_cpu_threads_list[*]}; do
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
M
MissPenguin 已提交
372
                        set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
M
MissPenguin 已提交
373
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
M
MissPenguin 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${cpp_use_trt_list[*]}; do
                for precision in ${cpp_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
M
MissPenguin 已提交
401
                        set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
M
MissPenguin 已提交
402
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
M
MissPenguin 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

L
LDOUBLEV 已提交
417
if [ ${MODE} = "infer" ]; then
L
LDOUBLEV 已提交
418 419 420 421 422 423
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
424 425 426 427 428 429 430 431 432
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
L
LDOUBLEV 已提交
433
            save_infer_dir=$(dirname $infer_model)
L
LDOUBLEV 已提交
434
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
L
LDOUBLEV 已提交
435
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
436 437 438
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
            echo ${infer_run_exports[Count]} 
            echo  $export_cmd
439 440
            eval $export_cmd
            status_export=$?
441
            status_check $status_export "${export_cmd}" "${status_log}"
L
fix  
LDOUBLEV 已提交
442
        else
L
LDOUBLEV 已提交
443
            save_infer_dir=${infer_model}
444 445 446
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
L
LDOUBLEV 已提交
447
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
448 449
        Count=$(($Count + 1))
    done
L
LDOUBLEV 已提交
450

M
MissPenguin 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
elif [ ${MODE} = "cpp_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_quant_flag=(${cpp_infer_is_quant})
    for infer_model in ${cpp_infer_model_dir_list[*]}; do
        #run inference
        is_quant=${infer_quant_flag[Count]}
        func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
469
    
T
tink2123 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
elif [ ${MODE} = "serving_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    #run serving
    func_serving "${web_service_cmd}"
M
MissPenguin 已提交
483

L
LDOUBLEV 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                
                # load pretrain from norm training if current trainer is pact or fpgm trainer
                if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
                    set_pretrain="${load_norm_train_model}"
                fi

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
                elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                else     # train with multi-machine
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
                if [ ${trainer} = ${trainer_norm} ]; then
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
L
LDOUBLEV 已提交
579 580 581
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
L
LDOUBLEV 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then