algorithm_rec_nrtr_en.md 10.3 KB
Newer Older
T
Topdu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# NRTR

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
- [5. FAQ](#5)
15
- [6. Release Note](#6)
T
Topdu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28

<a name="1"></a>
## 1. Introduction

Paper:
> [NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition](https://arxiv.org/abs/1806.00926)
> Fenfen Sheng and Zhineng Chen and Bo Xu
> ICDAR, 2019

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:

|Model|Backbone|config|Acc|Download link|
| --- | --- | --- | --- | --- |
29
|NRTR|MTB|[rec_mtb_nrtr.yml](../../configs/rec/rec_mtb_nrtr.yml)|84.21%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar)|
T
Topdu 已提交
30 31 32

<a name="2"></a>
## 2. Environment
M
MissPenguin 已提交
33
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
T
Topdu 已提交
34 35 36 37 38


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

M
MissPenguin 已提交
39
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
T
Topdu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

Training:

Specifically, after the data preparation is completed, the training can be started. The training command is as follows:

```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_mtb_nrtr.yml

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_mtb_nrtr.yml
```

Evaluation:

```
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```

Prediction:

```
# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_mtb_nrtr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy
```

<a name="4"></a>
## 4. Inference and Deployment

<a name="4-1"></a>
### 4.1 Python Inference
First, the model saved during the NRTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar)) ), you can use the following command to convert:

```
python3 tools/export_model.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy  Global.save_inference_dir=./inference/rec_mtb_nrtr
```

**Note:**
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file.

After the conversion is successful, there are three files in the directory:
```
/inference/rec_mtb_nrtr/
    ├── inference.pdiparams
    ├── inference.pdiparams.info
    └── inference.pdmodel
```


For NRTR text recognition model inference, the following commands can be executed:

```
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_mtb_nrtr/' --rec_algorithm='NRTR' --rec_image_shape='1,32,100' --rec_char_dict_path='./ppocr/utils/EN_symbol_dict.txt'
```

![](../imgs_words_en/word_10.png)

After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
102
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9465042352676392)
T
Topdu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
```

<a name="4-2"></a>
### 4.2 C++ Inference

Not supported

<a name="4-3"></a>
### 4.3 Serving

Not supported

<a name="4-4"></a>
### 4.4 More

Not supported

<a name="5"></a>
## 5. FAQ

1. In the `NRTR` paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
<a name="6"></a>
## 6. Release Note

1. The release/2.6 version updates the NRTR code structure. The new version of NRTR can load the model parameters of the old version (release/2.5 and before), and you may use the following code to convert the old version model parameters to the new version model parameters:

```python

    params = paddle.load('path/' + '.pdparams') # the old version parameters
    state_dict = model.state_dict() # the new version model parameters
    new_state_dict = {}

    for k1, v1 in state_dict.items():

        k = k1
        if 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k:

            k_para = k[:13] + 'layers.' + k[13:]
            q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3))
            k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3))
            v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3))

            new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1)

        elif 'encoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k:

            k_para = k[:13] + 'layers.' + k[13:]
            q = params[k_para.replace('qkv', 'conv1')]
            k = params[k_para.replace('qkv', 'conv2')]
            v = params[k_para.replace('qkv', 'conv3')]

            new_state_dict[k1] = np.concatenate([q, k, v], -1)

        elif 'encoder' in k and 'self_attn' in k and 'out_proj' in k:

            k_para = k[:13] + 'layers.' + k[13:]
            new_state_dict[k1] = params[k_para]

        elif 'encoder' in k and 'norm3' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            new_state_dict[k1] = params[k_para.replace('norm3', 'norm2')]

        elif 'encoder' in k and 'norm1' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            new_state_dict[k1] = params[k_para]


        elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'weight' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            q = params[k_para.replace('qkv', 'conv1')].transpose((1, 0, 2, 3))
            k = params[k_para.replace('qkv', 'conv2')].transpose((1, 0, 2, 3))
            v = params[k_para.replace('qkv', 'conv3')].transpose((1, 0, 2, 3))
            new_state_dict[k1] = np.concatenate([q[:, :, 0, 0], k[:, :, 0, 0], v[:, :, 0, 0]], -1)

        elif 'decoder' in k and 'self_attn' in k and 'qkv' in k and 'bias' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            q = params[k_para.replace('qkv', 'conv1')]
            k = params[k_para.replace('qkv', 'conv2')]
            v = params[k_para.replace('qkv', 'conv3')]
            new_state_dict[k1] = np.concatenate([q, k, v], -1)

        elif 'decoder' in k and 'self_attn' in k and 'out_proj' in k:

            k_para = k[:13] + 'layers.' + k[13:]
            new_state_dict[k1] = params[k_para]

        elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'weight' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('cross_attn', 'multihead_attn')
            q = params[k_para.replace('q', 'conv1')].transpose((1, 0, 2, 3))
            new_state_dict[k1] = q[:, :, 0, 0]

        elif 'decoder' in k and 'cross_attn' in k and 'q' in k and 'bias' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('cross_attn', 'multihead_attn')
            q = params[k_para.replace('q', 'conv1')]
            new_state_dict[k1] = q

        elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'weight' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('cross_attn', 'multihead_attn')
            k = params[k_para.replace('kv', 'conv2')].transpose((1, 0, 2, 3))
            v = params[k_para.replace('kv', 'conv3')].transpose((1, 0, 2, 3))
            new_state_dict[k1] = np.concatenate([k[:, :, 0, 0], v[:, :, 0, 0]], -1)

        elif 'decoder' in k and 'cross_attn' in k and 'kv' in k and 'bias' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('cross_attn', 'multihead_attn')
            k = params[k_para.replace('kv', 'conv2')]
            v = params[k_para.replace('kv', 'conv3')]
            new_state_dict[k1] = np.concatenate([k, v], -1)

        elif 'decoder' in k and 'cross_attn' in k and 'out_proj' in k:

            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('cross_attn', 'multihead_attn')
            new_state_dict[k1] = params[k_para]
        elif 'decoder' in k and 'norm' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            new_state_dict[k1] = params[k_para]
        elif 'mlp' in k and 'weight' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('fc', 'conv')
            k_para = k_para.replace('mlp.', '')
            w = params[k_para].transpose((1, 0, 2, 3))
            new_state_dict[k1] = w[:, :, 0, 0]
        elif 'mlp' in k and 'bias' in k:
            k_para = k[:13] + 'layers.' + k[13:]
            k_para = k_para.replace('fc', 'conv')
            k_para = k_para.replace('mlp.', '')
            w = params[k_para]
            new_state_dict[k1] = w

        else:
            new_state_dict[k1] = params[k1]

        if list(new_state_dict[k1].shape) != list(v1.shape):
            print(k1)


    for k, v1 in state_dict.items():
        if k not in new_state_dict.keys():
            print(1, k)
        elif list(new_state_dict[k].shape) != list(v1.shape):
            print(2, k)



    model.set_state_dict(new_state_dict)
    paddle.save(model.state_dict(), 'nrtrnew_from_old_params.pdparams')

```

2. The new version has a clean code structure and improved inference speed compared with the old version.

T
Topdu 已提交
259 260 261 262 263
## Citation

```bibtex
@article{Sheng2019NRTR,
  title     = {NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
264
  author    = {Fenfen Sheng and Zhineng Chen and Bo Xu},
T
Topdu 已提交
265
  booktitle = {ICDAR},
T
Topdu 已提交
266 267 268 269 270
  year      = {2019},
  url       = {http://arxiv.org/abs/1806.00926},
  pages     = {781-786}
}
```