predict_rec.py 24.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15
import os
import sys
T
Topdu 已提交
16
from PIL import Image
17
__dir__ = os.path.dirname(os.path.abspath(__file__))
L
LDOUBLEV 已提交
18
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey 已提交
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import numpy as np
import math
import time
W
WenmuZhou 已提交
27
import traceback
T
tink2123 已提交
28
import paddle
29 30

import tools.infer.utility as utility
W
WenmuZhou 已提交
31 32
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
33
from ppocr.utils.utility import get_image_file_list, check_and_read
L
LDOUBLEV 已提交
34

W
WenmuZhou 已提交
35 36
logger = get_logger()

L
LDOUBLEV 已提交
37 38 39

class TextRecognizer(object):
    def __init__(self, args):
40
        self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
        self.rec_batch_num = args.rec_batch_num
T
tink2123 已提交
42
        self.rec_algorithm = args.rec_algorithm
W
WenmuZhou 已提交
43 44
        postprocess_params = {
            'name': 'CTCLabelDecode',
45
            "character_dict_path": args.rec_char_dict_path,
W
WenmuZhou 已提交
46
            "use_space_char": args.use_space_char
T
tink2123 已提交
47
        }
T
tink2123 已提交
48 49 50
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
W
WenmuZhou 已提交
51 52 53 54 55 56
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
T
tink2123 已提交
57 58 59
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
60 61 62 63 64 65
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
T
Topdu 已提交
66 67 68 69 70
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
71
            }
A
andyjpaddle 已提交
72 73 74 75 76 77
        elif self.rec_algorithm == "VisionLAN":
            postprocess_params = {
                'name': 'VLLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
78 79 80 81 82 83 84 85 86 87 88
        elif self.rec_algorithm == 'ViTSTR':
            postprocess_params = {
                'name': 'ViTSTRLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
        elif self.rec_algorithm == 'ABINet':
            postprocess_params = {
                'name': 'ABINetLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
xuyang2233's avatar
xuyang2233 已提交
89
            }
xuyang2233's avatar
add pr  
xuyang2233 已提交
90 91
        elif self.rec_algorithm == "SPIN":
            postprocess_params = {
xuyang2233's avatar
xuyang2233 已提交
92
                'name': 'SPINLabelDecode',
xuyang2233's avatar
add pr  
xuyang2233 已提交
93 94 95
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char
            }
xuyang2233's avatar
xuyang2233 已提交
96 97 98 99 100 101 102
        elif self.rec_algorithm == "RobustScanner":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": args.rec_char_dict_path,
                "use_space_char": args.use_space_char,
                "rm_symbol": True
            }
103 104 105 106 107 108
        elif self.rec_algorithm == 'RFL':
            postprocess_params = {
                'name': 'RFLLabelDecode',
                "character_dict_path": None,
                "use_space_char": args.use_space_char
            }
W
WenmuZhou 已提交
109
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
110
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
W
WenmuZhou 已提交
111
            utility.create_predictor(args, 'rec', logger)
T
tink2123 已提交
112
        self.benchmark = args.benchmark
T
tink2123 已提交
113
        self.use_onnx = args.use_onnx
T
tink2123 已提交
114 115 116
        if args.benchmark:
            import auto_log
            pid = os.getpid()
L
LDOUBLEV 已提交
117
            gpu_id = utility.get_infer_gpuid()
T
tink2123 已提交
118 119 120
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision=args.precision,
T
tink2123 已提交
121
                batch_size=args.rec_batch_num,
T
tink2123 已提交
122
                data_shape="dynamic",
123
                save_path=None,  #args.save_log_path,
T
tink2123 已提交
124 125 126
                inference_config=self.config,
                pids=pid,
                process_name=None,
L
LDOUBLEV 已提交
127
                gpu_ids=gpu_id if args.use_gpu else None,
T
tink2123 已提交
128 129 130
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
T
tink2123 已提交
131
                warmup=0,
132
                logger=logger)
L
LDOUBLEV 已提交
133

134
    def resize_norm_img(self, img, max_wh_ratio):
L
LDOUBLEV 已提交
135
        imgC, imgH, imgW = self.rec_image_shape
136
        if self.rec_algorithm == 'NRTR' or self.rec_algorithm == 'ViTSTR':
T
Topdu 已提交
137 138 139
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
140 141 142 143
            if self.rec_algorithm == 'ViTSTR':
                img = image_pil.resize([imgW, imgH], Image.BICUBIC)
            else:
                img = image_pil.resize([imgW, imgH], Image.ANTIALIAS)
T
Topdu 已提交
144 145 146
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
147 148 149 150 151
            if self.rec_algorithm == 'ViTSTR':
                norm_img = norm_img.astype(np.float32) / 255.
            else:
                norm_img = norm_img.astype(np.float32) / 128. - 1.
            return norm_img
152 153 154 155 156 157 158 159 160 161
        elif self.rec_algorithm == 'RFL':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            resized_image = cv2.resize(
                img, (imgW, imgH), interpolation=cv2.INTER_CUBIC)
            resized_image = resized_image.astype('float32')
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
            resized_image -= 0.5
            resized_image /= 0.5
            return resized_image
T
Topdu 已提交
162

163
        assert imgC == img.shape[2]
A
andyjpaddle 已提交
164
        imgW = int((imgH * max_wh_ratio))
T
tink2123 已提交
165
        if self.use_onnx:
166 167 168 169
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

170
        h, w = img.shape[:2]
171 172 173 174 175
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
A
andyjpaddle 已提交
176 177 178 179
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
T
tink2123 已提交
180
        resized_image = cv2.resize(img, (resized_w, imgH))
L
LDOUBLEV 已提交
181 182 183 184 185 186 187
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im
T
tink2123 已提交
188

A
andyjpaddle 已提交
189 190 191 192 193 194 195 196 197 198
    def resize_norm_img_vl(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        img = img[:, :, ::-1]  # bgr2rgb
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        return resized_image

T
tink2123 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

T
Topdu 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

xuyang2233's avatar
add pr  
xuyang2233 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    def resize_norm_img_spin(self, img):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # return padding_im
        img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
        img = np.array(img, np.float32)
        img = np.expand_dims(img, -1)
        img = img.transpose((2, 0, 1))
        mean = [127.5]
        std = [127.5]
        mean = np.array(mean, dtype=np.float32)
        std = np.array(std, dtype=np.float32)
        mean = np.float32(mean.reshape(1, -1))
        stdinv = 1 / np.float32(std.reshape(1, -1))
        img -= mean
        img *= stdinv
        return img
A
andyjpaddle 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_abinet(self, img, image_shape):

        imgC, imgH, imgW = image_shape

        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image / 255.

        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        resized_image = (
            resized_image - mean[None, None, ...]) / std[None, None, ...]
        resized_image = resized_image.transpose((2, 0, 1))
        resized_image = resized_image.astype('float32')

        return resized_image

L
LDOUBLEV 已提交
352 353
    def __call__(self, img_list):
        img_num = len(img_list)
354
        # Calculate the aspect ratio of all text bars
355 356 357
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
张欣-男's avatar
张欣-男 已提交
358
        # Sorting can speed up the recognition process
359 360
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
361
        batch_num = self.rec_batch_num
L
LDOUBLEV 已提交
362
        st = time.time()
T
tink2123 已提交
363 364
        if self.benchmark:
            self.autolog.times.start()
L
LDOUBLEV 已提交
365 366 367
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
X
xiaoting 已提交
368 369 370 371 372 373 374
            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = []
                gsrm_word_pos_list = []
                gsrm_slf_attn_bias1_list = []
                gsrm_slf_attn_bias2_list = []
            if self.rec_algorithm == "SAR":
                valid_ratios = []
A
andyjpaddle 已提交
375
            imgC, imgH, imgW = self.rec_image_shape[:3]
A
andyjpaddle 已提交
376 377
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
L
LDOUBLEV 已提交
378
            for ino in range(beg_img_no, end_img_no):
379
                h, w = img_list[indices[ino]].shape[0:2]
380 381 382
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
T
Topdu 已提交
383
                if self.rec_algorithm == "SAR":
T
Topdu 已提交
384 385 386 387 388 389
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
T
Topdu 已提交
390
                elif self.rec_algorithm == "SRN":
L
LDOUBLEV 已提交
391 392
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
T
tink2123 已提交
393 394 395 396 397
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
T
Topdu 已提交
398
                elif self.rec_algorithm == "SVTR":
T
tink2123 已提交
399 400
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
T
Topdu 已提交
401 402
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
A
andyjpaddle 已提交
403 404 405 406 407
                elif self.rec_algorithm == "VisionLAN":
                    norm_img = self.resize_norm_img_vl(img_list[indices[ino]],
                                                       self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
add pr  
xuyang2233 已提交
408 409
                elif self.rec_algorithm == 'SPIN':
                    norm_img = self.resize_norm_img_spin(img_list[indices[ino]])
xuyang2233's avatar
xuyang2233 已提交
410 411
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
412 413 414 415
                elif self.rec_algorithm == "ABINet":
                    norm_img = self.resize_norm_img_abinet(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
T
Topdu 已提交
416
                    norm_img_batch.append(norm_img)
xuyang2233's avatar
xuyang2233 已提交
417 418
                elif self.rec_algorithm == "RobustScanner":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
419 420 421
                        img_list[indices[ino]],
                        self.rec_image_shape,
                        width_downsample_ratio=0.25)
xuyang2233's avatar
xuyang2233 已提交
422 423 424 425 426 427 428 429 430
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
                    word_positions_list = []
                    word_positions = np.array(range(0, 40)).astype('int64')
                    word_positions = np.expand_dims(word_positions, axis=0)
                    word_positions_list.append(word_positions)
T
Topdu 已提交
431 432 433 434 435
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
L
LDOUBLEV 已提交
436 437
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
T
tink2123 已提交
438 439
            if self.benchmark:
                self.autolog.times.stamp()
T
tink2123 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
T
tink2123 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
T
Topdu 已提交
476 477 478 479
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
A
andyjpaddle 已提交
480 481
                    np.array(
                        [valid_ratios], dtype=np.float32),
T
Topdu 已提交
482
                ]
T
tink2123 已提交
483 484 485 486 487 488
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
T
Topdu 已提交
489
                else:
T
tink2123 已提交
490 491 492 493
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
xuyang2233's avatar
xuyang2233 已提交
494 495 496 497 498 499 500 501 502 503 504 505
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = outputs[0]
            elif self.rec_algorithm == "RobustScanner":
                valid_ratios = np.concatenate(valid_ratios)
                word_positions_list = np.concatenate(word_positions_list)
506 507
                inputs = [norm_img_batch, valid_ratios, word_positions_list]

xuyang2233's avatar
xuyang2233 已提交
508 509 510 511 512 513 514 515 516 517 518
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
T
tink2123 已提交
519 520 521 522 523 524 525 526
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
T
Topdu 已提交
527
                    preds = outputs[0]
T
tink2123 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
W
WenmuZhou 已提交
548 549 550
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
T
tink2123 已提交
551 552
            if self.benchmark:
                self.autolog.times.end(stamp=True)
L
LDOUBLEV 已提交
553
        return rec_res, time.time() - st
L
LDOUBLEV 已提交
554 555


556
def main(args):
D
dyning 已提交
557
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
558 559 560
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
L
LDOUBLEV 已提交
561

T
tink2123 已提交
562 563
    logger.info(
        "In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
T
tink2123 已提交
564
        "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320"
T
tink2123 已提交
565
    )
566
    # warmup 2 times
L
LDOUBLEV 已提交
567
    if args.warmup:
T
tink2123 已提交
568
        img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8)
569
        for i in range(2):
L
LDOUBLEV 已提交
570
            res = text_recognizer([img] * int(args.rec_batch_num))
L
LDOUBLEV 已提交
571

L
LDOUBLEV 已提交
572
    for image_file in image_file_list:
573
        img, flag, _ = check_and_read(image_file)
L
LDOUBLEV 已提交
574 575
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
576 577 578 579 580
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
L
LDOUBLEV 已提交
581 582 583 584 585 586 587 588 589 590
    try:
        rec_res, _ = text_recognizer(img_list)

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    for ino in range(len(img_list)):
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               rec_res[ino]))
T
tink2123 已提交
591 592
    if args.benchmark:
        text_recognizer.autolog.report()
593 594 595 596


if __name__ == "__main__":
    main(utility.parse_args())