rec_rfl_loss.py 2.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn

from .basic_loss import CELoss, DistanceLoss


class RFLLoss(nn.Layer):
    def __init__(self, ignore_index=-100, **kwargs):
        super().__init__()

        self.cnt_loss = nn.MSELoss(**kwargs)
        self.seq_loss = nn.CrossEntropyLoss(ignore_index=ignore_index)

    def forward(self, predicts, batch):

        self.total_loss = {}
        total_loss = 0.0
        # batch [image, label, length, cnt_label]
        if predicts[0] is not None:
            cnt_loss = self.cnt_loss(predicts[0],
                                     paddle.cast(batch[3], paddle.float32))
            self.total_loss['cnt_loss'] = cnt_loss
            total_loss += cnt_loss

        if predicts[1] is not None:
            targets = batch[1].astype("int64")
            label_lengths = batch[2].astype('int64')
            batch_size, num_steps, num_classes = predicts[1].shape[0], predicts[
                1].shape[1], predicts[1].shape[2]
            assert len(targets.shape) == len(list(predicts[1].shape)) - 1, \
                "The target's shape and inputs's shape is [N, d] and [N, num_steps]"

            inputs = predicts[1][:, :-1, :]
            targets = targets[:, 1:]

            inputs = paddle.reshape(inputs, [-1, inputs.shape[-1]])
            targets = paddle.reshape(targets, [-1])
            seq_loss = self.seq_loss(inputs, targets)
            self.total_loss['seq_loss'] = seq_loss
            total_loss += seq_loss

        self.total_loss['loss'] = total_loss
        return self.total_loss