From 007a7c10af41df663ac4ae585b5f1245bdcbf663 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Technology=E7=8C=BF?= <1057052336@qq.com> Date: Sat, 12 Mar 2022 14:49:46 +0800 Subject: [PATCH] main --- main.py | 902 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 902 insertions(+) create mode 100644 main.py diff --git a/main.py b/main.py new file mode 100644 index 0000000..6332d97 --- /dev/null +++ b/main.py @@ -0,0 +1,902 @@ +from __future__ import division + +import sys +import math +import random +import time + +from collections import deque +from pyglet import image +from pyglet.gl import * +from pyglet.graphics import TextureGroup +from pyglet.window import key, mouse + +TICKS_PER_SEC = 60 + +# Size of sectors used to ease block loading. +SECTOR_SIZE = 16 + +WALKING_SPEED = 5 +FLYING_SPEED = 15 + +GRAVITY = 20.0 +MAX_JUMP_HEIGHT = 1.0 # About the height of a block. +# To derive the formula for calculating jump speed, first solve +# v_t = v_0 + a * t +# for the time at which you achieve maximum height, where a is the acceleration +# due to gravity and v_t = 0. This gives: +# t = - v_0 / a +# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in +# s = s_0 + v_0 * t + (a * t^2) / 2 +JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT) +TERMINAL_VELOCITY = 50 + +PLAYER_HEIGHT = 2 + +if sys.version_info[0] >= 3: + xrange = range + +def cube_vertices(x, y, z, n): + """ Return the vertices of the cube at position x, y, z with size 2*n. + + """ + return [ + x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top + x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom + x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left + x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right + x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front + x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back + ] + + +def tex_coord(x, y, n=4): + """ Return the bounding vertices of the texture square. + + """ + m = 1.0 / n + dx = x * m + dy = y * m + return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m + + +def tex_coords(top, bottom, side): + """ Return a list of the texture squares for the top, bottom and side. + + """ + top = tex_coord(*top) + bottom = tex_coord(*bottom) + side = tex_coord(*side) + result = [] + result.extend(top) + result.extend(bottom) + result.extend(side * 4) + return result + + +TEXTURE_PATH = 'texture.png' + +GRASS = tex_coords((1, 0), (0, 1), (0, 0)) +SAND = tex_coords((1, 1), (1, 1), (1, 1)) +BRICK = tex_coords((2, 0), (2, 0), (2, 0)) +STONE = tex_coords((2, 1), (2, 1), (2, 1)) + +FACES = [ + ( 0, 1, 0), + ( 0,-1, 0), + (-1, 0, 0), + ( 1, 0, 0), + ( 0, 0, 1), + ( 0, 0,-1), +] + + +def normalize(position): + """ Accepts `position` of arbitrary precision and returns the block + containing that position. + + Parameters + ---------- + position : tuple of len 3 + + Returns + ------- + block_position : tuple of ints of len 3 + + """ + x, y, z = position + x, y, z = (int(round(x)), int(round(y)), int(round(z))) + return (x, y, z) + + +def sectorize(position): + """ Returns a tuple representing the sector for the given `position`. + + Parameters + ---------- + position : tuple of len 3 + + Returns + ------- + sector : tuple of len 3 + + """ + x, y, z = normalize(position) + x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE + return (x, 0, z) + + +class Model(object): + + def __init__(self): + + # A Batch is a collection of vertex lists for batched rendering. + self.batch = pyglet.graphics.Batch() + + # A TextureGroup manages an OpenGL texture. + self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) + + # A mapping from position to the texture of the block at that position. + # This defines all the blocks that are currently in the world. + self.world = {} + + # Same mapping as `world` but only contains blocks that are shown. + self.shown = {} + + # Mapping from position to a pyglet `VertextList` for all shown blocks. + self._shown = {} + + # Mapping from sector to a list of positions inside that sector. + self.sectors = {} + + # Simple function queue implementation. The queue is populated with + # _show_block() and _hide_block() calls + self.queue = deque() + + self._initialize() + + def _initialize(self): + """ Initialize the world by placing all the blocks. + + """ + n = 80 # 1/2 width and height of world + s = 1 # step size + y = 0 # initial y height + for x in xrange(-n, n + 1, s): + for z in xrange(-n, n + 1, s): + # create a layer stone an grass everywhere. + self.add_block((x, y - 2, z), GRASS, immediate=False) + self.add_block((x, y - 3, z), STONE, immediate=False) + if x in (-n, n) or z in (-n, n): + # create outer walls. + for dy in xrange(-2, 3): + self.add_block((x, y + dy, z), STONE, immediate=False) + + # generate the hills randomly + o = n - 10 + for _ in xrange(120): + a = random.randint(-o, o) # x position of the hill + b = random.randint(-o, o) # z position of the hill + c = -1 # base of the hill + h = random.randint(1, 6) # height of the hill + s = random.randint(4, 8) # 2 * s is the side length of the hill + d = 1 # how quickly to taper off the hills + t = random.choice([GRASS, SAND, BRICK]) + for y in xrange(c, c + h): + for x in xrange(a - s, a + s + 1): + for z in xrange(b - s, b + s + 1): + if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2: + continue + if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2: + continue + self.add_block((x, y, z), t, immediate=False) + s -= d # decrement side length so hills taper off + + def hit_test(self, position, vector, max_distance=8): + """ Line of sight search from current position. If a block is + intersected it is returned, along with the block previously in the line + of sight. If no block is found, return None, None. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position to check visibility from. + vector : tuple of len 3 + The line of sight vector. + max_distance : int + How many blocks away to search for a hit. + + """ + m = 8 + x, y, z = position + dx, dy, dz = vector + previous = None + for _ in xrange(max_distance * m): + key = normalize((x, y, z)) + if key != previous and key in self.world: + return key, previous + previous = key + x, y, z = x + dx / m, y + dy / m, z + dz / m + return None, None + + def exposed(self, position): + """ Returns False is given `position` is surrounded on all 6 sides by + blocks, True otherwise. + + """ + x, y, z = position + for dx, dy, dz in FACES: + if (x + dx, y + dy, z + dz) not in self.world: + return True + return False + + def add_block(self, position, texture, immediate=True): + """ Add a block with the given `texture` and `position` to the world. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position of the block to add. + texture : list of len 3 + The coordinates of the texture squares. Use `tex_coords()` to + generate. + immediate : bool + Whether or not to draw the block immediately. + + """ + if position in self.world: + self.remove_block(position, immediate) + self.world[position] = texture + self.sectors.setdefault(sectorize(position), []).append(position) + if immediate: + if self.exposed(position): + self.show_block(position) + self.check_neighbors(position) + + def remove_block(self, position, immediate=True): + """ Remove the block at the given `position`. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position of the block to remove. + immediate : bool + Whether or not to immediately remove block from canvas. + + """ + del self.world[position] + self.sectors[sectorize(position)].remove(position) + if immediate: + if position in self.shown: + self.hide_block(position) + self.check_neighbors(position) + + def check_neighbors(self, position): + """ Check all blocks surrounding `position` and ensure their visual + state is current. This means hiding blocks that are not exposed and + ensuring that all exposed blocks are shown. Usually used after a block + is added or removed. + + """ + x, y, z = position + for dx, dy, dz in FACES: + key = (x + dx, y + dy, z + dz) + if key not in self.world: + continue + if self.exposed(key): + if key not in self.shown: + self.show_block(key) + else: + if key in self.shown: + self.hide_block(key) + + def show_block(self, position, immediate=True): + """ Show the block at the given `position`. This method assumes the + block has already been added with add_block() + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position of the block to show. + immediate : bool + Whether or not to show the block immediately. + + """ + texture = self.world[position] + self.shown[position] = texture + if immediate: + self._show_block(position, texture) + else: + self._enqueue(self._show_block, position, texture) + + def _show_block(self, position, texture): + """ Private implementation of the `show_block()` method. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position of the block to show. + texture : list of len 3 + The coordinates of the texture squares. Use `tex_coords()` to + generate. + + """ + x, y, z = position + vertex_data = cube_vertices(x, y, z, 0.5) + texture_data = list(texture) + # create vertex list + # FIXME Maybe `add_indexed()` should be used instead + self._shown[position] = self.batch.add(24, GL_QUADS, self.group, + ('v3f/static', vertex_data), + ('t2f/static', texture_data)) + + def hide_block(self, position, immediate=True): + """ Hide the block at the given `position`. Hiding does not remove the + block from the world. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position of the block to hide. + immediate : bool + Whether or not to immediately remove the block from the canvas. + + """ + self.shown.pop(position) + if immediate: + self._hide_block(position) + else: + self._enqueue(self._hide_block, position) + + def _hide_block(self, position): + """ Private implementation of the 'hide_block()` method. + + """ + self._shown.pop(position).delete() + + def show_sector(self, sector): + """ Ensure all blocks in the given sector that should be shown are + drawn to the canvas. + + """ + for position in self.sectors.get(sector, []): + if position not in self.shown and self.exposed(position): + self.show_block(position, False) + + def hide_sector(self, sector): + """ Ensure all blocks in the given sector that should be hidden are + removed from the canvas. + + """ + for position in self.sectors.get(sector, []): + if position in self.shown: + self.hide_block(position, False) + + def change_sectors(self, before, after): + """ Move from sector `before` to sector `after`. A sector is a + contiguous x, y sub-region of world. Sectors are used to speed up + world rendering. + + """ + before_set = set() + after_set = set() + pad = 4 + for dx in xrange(-pad, pad + 1): + for dy in [0]: # xrange(-pad, pad + 1): + for dz in xrange(-pad, pad + 1): + if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2: + continue + if before: + x, y, z = before + before_set.add((x + dx, y + dy, z + dz)) + if after: + x, y, z = after + after_set.add((x + dx, y + dy, z + dz)) + show = after_set - before_set + hide = before_set - after_set + for sector in show: + self.show_sector(sector) + for sector in hide: + self.hide_sector(sector) + + def _enqueue(self, func, *args): + """ Add `func` to the internal queue. + + """ + self.queue.append((func, args)) + + def _dequeue(self): + """ Pop the top function from the internal queue and call it. + + """ + func, args = self.queue.popleft() + func(*args) + + def process_queue(self): + """ Process the entire queue while taking periodic breaks. This allows + the game loop to run smoothly. The queue contains calls to + _show_block() and _hide_block() so this method should be called if + add_block() or remove_block() was called with immediate=False + + """ + start = time.perf_counter() + while self.queue and time.perf_counter() - start < 1.0 / TICKS_PER_SEC: + self._dequeue() + + def process_entire_queue(self): + """ Process the entire queue with no breaks. + + """ + while self.queue: + self._dequeue() + + +class Window(pyglet.window.Window): + + def __init__(self, *args, **kwargs): + super(Window, self).__init__(*args, **kwargs) + + # Whether or not the window exclusively captures the mouse. + self.exclusive = False + + # When flying gravity has no effect and speed is increased. + self.flying = False + + # Strafing is moving lateral to the direction you are facing, + # e.g. moving to the left or right while continuing to face forward. + # + # First element is -1 when moving forward, 1 when moving back, and 0 + # otherwise. The second element is -1 when moving left, 1 when moving + # right, and 0 otherwise. + self.strafe = [0, 0] + + # Current (x, y, z) position in the world, specified with floats. Note + # that, perhaps unlike in math class, the y-axis is the vertical axis. + self.position = (0, 0, 0) + + # First element is rotation of the player in the x-z plane (ground + # plane) measured from the z-axis down. The second is the rotation + # angle from the ground plane up. Rotation is in degrees. + # + # The vertical plane rotation ranges from -90 (looking straight down) to + # 90 (looking straight up). The horizontal rotation range is unbounded. + self.rotation = (0, 0) + + # Which sector the player is currently in. + self.sector = None + + # The crosshairs at the center of the screen. + self.reticle = None + + # Velocity in the y (upward) direction. + self.dy = 0 + + # A list of blocks the player can place. Hit num keys to cycle. + self.inventory = [BRICK, GRASS, SAND] + + # The current block the user can place. Hit num keys to cycle. + self.block = self.inventory[0] + + # Convenience list of num keys. + self.num_keys = [ + key._1, key._2, key._3, key._4, key._5, + key._6, key._7, key._8, key._9, key._0] + + # Instance of the model that handles the world. + self.model = Model() + + # The label that is displayed in the top left of the canvas. + self.label = pyglet.text.Label('', font_name='Arial', font_size=18, + x=10, y=self.height - 10, anchor_x='left', anchor_y='top', + color=(0, 0, 0, 255)) + + # This call schedules the `update()` method to be called + # TICKS_PER_SEC. This is the main game event loop. + pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC) + + def set_exclusive_mouse(self, exclusive): + """ If `exclusive` is True, the game will capture the mouse, if False + the game will ignore the mouse. + + """ + super(Window, self).set_exclusive_mouse(exclusive) + self.exclusive = exclusive + + def get_sight_vector(self): + """ Returns the current line of sight vector indicating the direction + the player is looking. + + """ + x, y = self.rotation + # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and + # is 1 when looking ahead parallel to the ground and 0 when looking + # straight up or down. + m = math.cos(math.radians(y)) + # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when + # looking straight up. + dy = math.sin(math.radians(y)) + dx = math.cos(math.radians(x - 90)) * m + dz = math.sin(math.radians(x - 90)) * m + return (dx, dy, dz) + + def get_motion_vector(self): + """ Returns the current motion vector indicating the velocity of the + player. + + Returns + ------- + vector : tuple of len 3 + Tuple containing the velocity in x, y, and z respectively. + + """ + if any(self.strafe): + x, y = self.rotation + strafe = math.degrees(math.atan2(*self.strafe)) + y_angle = math.radians(y) + x_angle = math.radians(x + strafe) + if self.flying: + m = math.cos(y_angle) + dy = math.sin(y_angle) + if self.strafe[1]: + # Moving left or right. + dy = 0.0 + m = 1 + if self.strafe[0] > 0: + # Moving backwards. + dy *= -1 + # When you are flying up or down, you have less left and right + # motion. + dx = math.cos(x_angle) * m + dz = math.sin(x_angle) * m + else: + dy = 0.0 + dx = math.cos(x_angle) + dz = math.sin(x_angle) + else: + dy = 0.0 + dx = 0.0 + dz = 0.0 + return (dx, dy, dz) + + def update(self, dt): + """ This method is scheduled to be called repeatedly by the pyglet + clock. + + Parameters + ---------- + dt : float + The change in time since the last call. + + """ + self.model.process_queue() + sector = sectorize(self.position) + if sector != self.sector: + self.model.change_sectors(self.sector, sector) + if self.sector is None: + self.model.process_entire_queue() + self.sector = sector + m = 8 + dt = min(dt, 0.2) + for _ in xrange(m): + self._update(dt / m) + + def _update(self, dt): + """ Private implementation of the `update()` method. This is where most + of the motion logic lives, along with gravity and collision detection. + + Parameters + ---------- + dt : float + The change in time since the last call. + + """ + # walking + speed = FLYING_SPEED if self.flying else WALKING_SPEED + d = dt * speed # distance covered this tick. + dx, dy, dz = self.get_motion_vector() + # New position in space, before accounting for gravity. + dx, dy, dz = dx * d, dy * d, dz * d + # gravity + if not self.flying: + # Update your vertical speed: if you are falling, speed up until you + # hit terminal velocity; if you are jumping, slow down until you + # start falling. + self.dy -= dt * GRAVITY + self.dy = max(self.dy, -TERMINAL_VELOCITY) + dy += self.dy * dt + # collisions + x, y, z = self.position + x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT) + self.position = (x, y, z) + + def collide(self, position, height): + """ Checks to see if the player at the given `position` and `height` + is colliding with any blocks in the world. + + Parameters + ---------- + position : tuple of len 3 + The (x, y, z) position to check for collisions at. + height : int or float + The height of the player. + + Returns + ------- + position : tuple of len 3 + The new position of the player taking into account collisions. + + """ + # How much overlap with a dimension of a surrounding block you need to + # have to count as a collision. If 0, touching terrain at all counts as + # a collision. If .49, you sink into the ground, as if walking through + # tall grass. If >= .5, you'll fall through the ground. + pad = 0.25 + p = list(position) + np = normalize(position) + for face in FACES: # check all surrounding blocks + for i in xrange(3): # check each dimension independently + if not face[i]: + continue + # How much overlap you have with this dimension. + d = (p[i] - np[i]) * face[i] + if d < pad: + continue + for dy in xrange(height): # check each height + op = list(np) + op[1] -= dy + op[i] += face[i] + if tuple(op) not in self.model.world: + continue + p[i] -= (d - pad) * face[i] + if face == (0, -1, 0) or face == (0, 1, 0): + # You are colliding with the ground or ceiling, so stop + # falling / rising. + self.dy = 0 + break + return tuple(p) + + def on_mouse_press(self, x, y, button, modifiers): + """ Called when a mouse button is pressed. See pyglet docs for button + amd modifier mappings. + + Parameters + ---------- + x, y : int + The coordinates of the mouse click. Always center of the screen if + the mouse is captured. + button : int + Number representing mouse button that was clicked. 1 = left button, + 4 = right button. + modifiers : int + Number representing any modifying keys that were pressed when the + mouse button was clicked. + + """ + if self.exclusive: + vector = self.get_sight_vector() + block, previous = self.model.hit_test(self.position, vector) + if (button == mouse.RIGHT) or \ + ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)): + # ON OSX, control + left click = right click. + if previous: + self.model.add_block(previous, self.block) + elif button == pyglet.window.mouse.LEFT and block: + texture = self.model.world[block] + if texture != STONE: + self.model.remove_block(block) + else: + self.set_exclusive_mouse(True) + + def on_mouse_motion(self, x, y, dx, dy): + """ Called when the player moves the mouse. + + Parameters + ---------- + x, y : int + The coordinates of the mouse click. Always center of the screen if + the mouse is captured. + dx, dy : float + The movement of the mouse. + + """ + if self.exclusive: + m = 0.15 + x, y = self.rotation + x, y = x + dx * m, y + dy * m + y = max(-90, min(90, y)) + self.rotation = (x, y) + + def on_key_press(self, symbol, modifiers): + """ Called when the player presses a key. See pyglet docs for key + mappings. + + Parameters + ---------- + symbol : int + Number representing the key that was pressed. + modifiers : int + Number representing any modifying keys that were pressed. + + """ + if symbol == key.W: + self.strafe[0] -= 1 + elif symbol == key.S: + self.strafe[0] += 1 + elif symbol == key.A: + self.strafe[1] -= 1 + elif symbol == key.D: + self.strafe[1] += 1 + elif symbol == key.SPACE: + if self.dy == 0: + self.dy = JUMP_SPEED + elif symbol == key.ESCAPE: + self.set_exclusive_mouse(False) + elif symbol == key.TAB: + self.flying = not self.flying + elif symbol in self.num_keys: + index = (symbol - self.num_keys[0]) % len(self.inventory) + self.block = self.inventory[index] + + def on_key_release(self, symbol, modifiers): + """ Called when the player releases a key. See pyglet docs for key + mappings. + + Parameters + ---------- + symbol : int + Number representing the key that was pressed. + modifiers : int + Number representing any modifying keys that were pressed. + + """ + if symbol == key.W: + self.strafe[0] += 1 + elif symbol == key.S: + self.strafe[0] -= 1 + elif symbol == key.A: + self.strafe[1] += 1 + elif symbol == key.D: + self.strafe[1] -= 1 + + def on_resize(self, width, height): + """ Called when the window is resized to a new `width` and `height`. + + """ + # label + self.label.y = height - 10 + # reticle + if self.reticle: + self.reticle.delete() + x, y = self.width // 2, self.height // 2 + n = 10 + self.reticle = pyglet.graphics.vertex_list(4, + ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n)) + ) + + def set_2d(self): + """ Configure OpenGL to draw in 2d. + + """ + width, height = self.get_size() + glDisable(GL_DEPTH_TEST) + viewport = self.get_viewport_size() + glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) + glMatrixMode(GL_PROJECTION) + glLoadIdentity() + glOrtho(0, max(1, width), 0, max(1, height), -1, 1) + glMatrixMode(GL_MODELVIEW) + glLoadIdentity() + + def set_3d(self): + """ Configure OpenGL to draw in 3d. + + """ + width, height = self.get_size() + glEnable(GL_DEPTH_TEST) + viewport = self.get_viewport_size() + glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) + glMatrixMode(GL_PROJECTION) + glLoadIdentity() + gluPerspective(65.0, width / float(height), 0.1, 60.0) + glMatrixMode(GL_MODELVIEW) + glLoadIdentity() + x, y = self.rotation + glRotatef(x, 0, 1, 0) + glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x))) + x, y, z = self.position + glTranslatef(-x, -y, -z) + + def on_draw(self): + """ Called by pyglet to draw the canvas. + + """ + self.clear() + self.set_3d() + glColor3d(1, 1, 1) + self.model.batch.draw() + self.draw_focused_block() + self.set_2d() + self.draw_label() + self.draw_reticle() + + def draw_focused_block(self): + """ Draw black edges around the block that is currently under the + crosshairs. + + """ + vector = self.get_sight_vector() + block = self.model.hit_test(self.position, vector)[0] + if block: + x, y, z = block + vertex_data = cube_vertices(x, y, z, 0.51) + glColor3d(0, 0, 0) + glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) + pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data)) + glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) + + def draw_label(self): + """ Draw the label in the top left of the screen. + + """ + x, y, z = self.position + self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % ( + pyglet.clock.get_fps(), x, y, z, + len(self.model._shown), len(self.model.world)) + self.label.draw() + + def draw_reticle(self): + """ Draw the crosshairs in the center of the screen. + + """ + glColor3d(0, 0, 0) + self.reticle.draw(GL_LINES) + + +def setup_fog(): + """ Configure the OpenGL fog properties. + + """ + # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's + # post-texturing color." + glEnable(GL_FOG) + # Set the fog color. + glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1)) + # Say we have no preference between rendering speed and quality. + glHint(GL_FOG_HINT, GL_DONT_CARE) + # Specify the equation used to compute the blending factor. + glFogi(GL_FOG_MODE, GL_LINEAR) + # How close and far away fog starts and ends. The closer the start and end, + # the denser the fog in the fog range. + glFogf(GL_FOG_START, 20.0) + glFogf(GL_FOG_END, 60.0) + + +def setup(): + """ Basic OpenGL configuration. + + """ + # Set the color of "clear", i.e. the sky, in rgba. + glClearColor(0.5, 0.69, 1.0, 1) + # Enable culling (not rendering) of back-facing facets -- facets that aren't + # visible to you. + glEnable(GL_CULL_FACE) + # Set the texture minification/magnification function to GL_NEAREST (nearest + # in Manhattan distance) to the specified texture coordinates. GL_NEAREST + # "is generally faster than GL_LINEAR, but it can produce textured images + # with sharper edges because the transition between texture elements is not + # as smooth." + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) + setup_fog() + + +def main(): + window = Window(width=800, height=600, caption='Pyglet', resizable=True) + # Hide the mouse cursor and prevent the mouse from leaving the window. + window.set_exclusive_mouse(True) + setup() + pyglet.app.run() + + +if __name__ == '__main__': + main() -- GitLab