package proc import ( "bytes" "debug/dwarf" "debug/elf" "debug/macho" "debug/pe" "encoding/binary" "encoding/hex" "errors" "fmt" "go/ast" "go/token" "io" "os" "path/filepath" "sort" "strconv" "strings" "sync" "time" "github.com/go-delve/delve/pkg/dwarf/frame" "github.com/go-delve/delve/pkg/dwarf/godwarf" "github.com/go-delve/delve/pkg/dwarf/line" "github.com/go-delve/delve/pkg/dwarf/loclist" "github.com/go-delve/delve/pkg/dwarf/op" "github.com/go-delve/delve/pkg/dwarf/reader" "github.com/go-delve/delve/pkg/dwarf/util" "github.com/go-delve/delve/pkg/goversion" "github.com/go-delve/delve/pkg/logflags" "github.com/hashicorp/golang-lru/simplelru" "github.com/sirupsen/logrus" ) const ( dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231) dwarfAttrAddrBase = 0x74 // debug/dwarf.AttrAddrBase in Go 1.14, defined here for compatibility with Go < 1.14 dwarfTreeCacheSize = 512 // size of the dwarfTree cache of each image ) // BinaryInfo holds information on the binaries being executed (this // includes both the executable and also any loaded libraries). type BinaryInfo struct { // Architecture of this binary. Arch *Arch // GOOS operating system this binary is executing on. GOOS string debugInfoDirectories []string // Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point Functions []Function // Sources is a list of all source files found in debug_line. Sources []string // LookupFunc maps function names to a description of the function. LookupFunc map[string]*Function // SymNames maps addr to a description *elf.Symbol of this addr. SymNames map[uint64]*elf.Symbol // Images is a list of loaded shared libraries (also known as // shared objects on linux or DLLs on windows). Images []*Image ElfDynamicSection ElfDynamicSection lastModified time.Time // Time the executable of this process was last modified closer io.Closer sepDebugCloser io.Closer // PackageMap maps package names to package paths, needed to lookup types inside DWARF info. // On Go1.12 this mapping is determined by using the last element of a package path, for example: // github.com/go-delve/delve // will map to 'delve' because it ends in '/delve'. // Starting with Go1.13 debug_info will contain a special attribute // (godwarf.AttrGoPackageName) containing the canonical package name for // each package. // If multiple packages have the same name the map entry will have more // than one item in the slice. PackageMap map[string][]string frameEntries frame.FrameDescriptionEntries types map[string]dwarfRef packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address gStructOffset uint64 // nameOfRuntimeType maps an address of a runtime._type struct to its // decoded name. Used with versions of Go <= 1.10 to figure out the DIE of // the concrete type of interfaces. nameOfRuntimeType map[uint64]nameOfRuntimeTypeEntry // consts[off] lists all the constants with the type defined at offset off. consts constantsMap // inlinedCallLines maps a file:line pair, corresponding to the header line // of a function to a list of PC addresses where an inlined call to that // function starts. inlinedCallLines map[fileLine][]uint64 logger *logrus.Entry } var ( // ErrCouldNotDetermineRelocation is an error returned when Delve could not determine the base address of a // position independent executable. ErrCouldNotDetermineRelocation = errors.New("could not determine the base address of a PIE") // ErrNoDebugInfoFound is returned when Delve cannot open the debug_info // section or find an external debug info file. ErrNoDebugInfoFound = errors.New("could not open debug info") ) var ( supportedLinuxArch = map[elf.Machine]bool{ elf.EM_X86_64: true, elf.EM_AARCH64: true, elf.EM_386: true, } supportedWindowsArch = map[_PEMachine]bool{ _IMAGE_FILE_MACHINE_AMD64: true, } supportedDarwinArch = map[macho.Cpu]bool{ macho.CpuAmd64: true, macho.CpuArm64: true, } ) // ErrFunctionNotFound is returned when failing to find the // function named 'FuncName' within the binary. type ErrFunctionNotFound struct { FuncName string } func (err *ErrFunctionNotFound) Error() string { return fmt.Sprintf("could not find function %s\n", err.FuncName) } // FindFileLocation returns the PC for a given file:line. // Assumes that `file` is normalized to lower case and '/' on Windows. func FindFileLocation(p Process, fileName string, lineno int) ([]uint64, error) { pcs, err := p.BinInfo().LineToPC(fileName, lineno) if err != nil { return nil, err } var fn *Function for i := range pcs { if fn == nil || pcs[i] < fn.Entry || pcs[i] >= fn.End { fn = p.BinInfo().PCToFunc(pcs[i]) } if fn != nil && fn.Entry == pcs[i] { pcs[i], _ = FirstPCAfterPrologue(p, fn, true) } } return pcs, nil } // FindFunctionLocation finds address of a function's line // If lineOffset is passed FindFunctionLocation will return the address of that line func FindFunctionLocation(p Process, funcName string, lineOffset int) ([]uint64, error) { bi := p.BinInfo() origfn := bi.LookupFunc[funcName] if origfn == nil { return nil, &ErrFunctionNotFound{funcName} } if lineOffset <= 0 { r := make([]uint64, 0, len(origfn.InlinedCalls)+1) if origfn.Entry > 0 { // add concrete implementation of the function pc, err := FirstPCAfterPrologue(p, origfn, false) if err != nil { return nil, err } r = append(r, pc) } // add inlined calls to the function for _, call := range origfn.InlinedCalls { r = append(r, call.LowPC) } if len(r) == 0 { return nil, &ErrFunctionNotFound{funcName} } return r, nil } filename, lineno := origfn.cu.lineInfo.PCToLine(origfn.Entry, origfn.Entry) return bi.LineToPC(filename, lineno+lineOffset) } // FirstPCAfterPrologue returns the address of the first // instruction after the prologue for function fn. // If sameline is set FirstPCAfterPrologue will always return an // address associated with the same line as fn.Entry. func FirstPCAfterPrologue(p Process, fn *Function, sameline bool) (uint64, error) { pc, _, line, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End) if ok { if !sameline { return pc, nil } _, entryLine := fn.cu.lineInfo.PCToLine(fn.Entry, fn.Entry) if entryLine == line { return pc, nil } } pc, err := firstPCAfterPrologueDisassembly(p, fn, sameline) if err != nil { return fn.Entry, err } if pc == fn.Entry { // Look for the first instruction with the stmt flag set, so that setting a // breakpoint with file:line and with the function name always result on // the same instruction being selected. if pc2, _, _, ok := fn.cu.lineInfo.FirstStmtForLine(fn.Entry, fn.End); ok { return pc2, nil } } return pc, nil } // cpuArch is a stringer interface representing CPU architectures. type cpuArch interface { String() string } // ErrUnsupportedArch is returned when attempting to debug a binary compiled for an unsupported architecture. type ErrUnsupportedArch struct { os string cpuArch cpuArch } func (e *ErrUnsupportedArch) Error() string { var supportArchs []cpuArch switch e.os { case "linux": for linuxArch, _ := range supportedLinuxArch { supportArchs = append(supportArchs, linuxArch) } case "windows": for windowArch, _ := range supportedWindowsArch { supportArchs = append(supportArchs, windowArch) } case "darwin": for darwinArch, _ := range supportedDarwinArch { supportArchs = append(supportArchs, darwinArch) } } errStr := "unsupported architecture of " + e.os + "/" + e.cpuArch.String() errStr += " - only" for _, arch := range supportArchs { errStr += " " + e.os + "/" + arch.String() + " " } if len(supportArchs) == 1 { errStr += "is supported" } else { errStr += "are supported" } return errStr } type compileUnit struct { name string // univocal name for non-go compile units Version uint8 // DWARF version of this compile unit lowPC uint64 ranges [][2]uint64 entry *dwarf.Entry // debug_info entry describing this compile unit isgo bool // true if this is the go compile unit lineInfo *line.DebugLineInfo // debug_line segment associated with this compile unit optimized bool // this compile unit is optimized producer string // producer attribute offset dwarf.Offset // offset of the entry describing the compile unit image *Image // parent image of this compilation unit. } type fileLine struct { file string line int } // dwarfRef is a reference to a Debug Info Entry inside a shared object. type dwarfRef struct { imageIndex int offset dwarf.Offset } // InlinedCall represents a concrete inlined call to a function. type InlinedCall struct { cu *compileUnit LowPC, HighPC uint64 // Address range of the generated inlined instructions } // Function describes a function in the target program. type Function struct { Name string Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc offset dwarf.Offset cu *compileUnit // InlinedCalls lists all inlined calls to this function InlinedCalls []InlinedCall } // PackageName returns the package part of the symbol name, // or the empty string if there is none. // Borrowed from $GOROOT/debug/gosym/symtab.go func (fn *Function) PackageName() string { return packageName(fn.Name) } func packageName(name string) string { pathend := strings.LastIndex(name, "/") if pathend < 0 { pathend = 0 } if i := strings.Index(name[pathend:], "."); i != -1 { return name[:pathend+i] } return "" } // ReceiverName returns the receiver type name of this symbol, // or the empty string if there is none. // Borrowed from $GOROOT/debug/gosym/symtab.go func (fn *Function) ReceiverName() string { pathend := strings.LastIndex(fn.Name, "/") if pathend < 0 { pathend = 0 } l := strings.Index(fn.Name[pathend:], ".") r := strings.LastIndex(fn.Name[pathend:], ".") if l == -1 || r == -1 || l == r { return "" } return fn.Name[pathend+l+1 : pathend+r] } // BaseName returns the symbol name without the package or receiver name. // Borrowed from $GOROOT/debug/gosym/symtab.go func (fn *Function) BaseName() string { if i := strings.LastIndex(fn.Name, "."); i != -1 { return fn.Name[i+1:] } return fn.Name } // Optimized returns true if the function was optimized by the compiler. func (fn *Function) Optimized() bool { return fn.cu.optimized } // PrologueEndPC returns the PC just after the function prologue func (fn *Function) PrologueEndPC() uint64 { pc, _, _, ok := fn.cu.lineInfo.PrologueEndPC(fn.Entry, fn.End) if !ok { return fn.Entry } return pc } // From $GOROOT/src/runtime/traceback.go:597 // exportedRuntime reports whether the function is an exported runtime function. // It is only for runtime functions, so ASCII A-Z is fine. func (fn *Function) exportedRuntime() bool { name := fn.Name const n = len("runtime.") return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z' } // unexportedRuntime reports whether the function is a private runtime function. func (fn *Function) privateRuntime() bool { name := fn.Name const n = len("runtime.") return len(name) > n && name[:n] == "runtime." && !('A' <= name[n] && name[n] <= 'Z') } type constantsMap map[dwarfRef]*constantType type constantType struct { initialized bool values []constantValue } type constantValue struct { name string fullName string value int64 singleBit bool } // packageVar represents a package-level variable (or a C global variable). // If a global variable does not have an address (for example it's stored in // a register, or non-contiguously) addr will be 0. type packageVar struct { name string cu *compileUnit offset dwarf.Offset addr uint64 } type buildIDHeader struct { Namesz uint32 Descsz uint32 Type uint32 } // ElfDynamicSection describes the .dynamic section of an ELF executable. type ElfDynamicSection struct { Addr uint64 // relocated address of where the .dynamic section is mapped in memory Size uint64 // size of the .dynamic section of the executable } // NewBinaryInfo returns an initialized but unloaded BinaryInfo struct. func NewBinaryInfo(goos, goarch string) *BinaryInfo { r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uint64]nameOfRuntimeTypeEntry), logger: logflags.DebuggerLogger()} // TODO: find better way to determine proc arch (perhaps use executable file info). switch goarch { case "386": r.Arch = I386Arch(goos) case "amd64": r.Arch = AMD64Arch(goos) case "arm64": r.Arch = ARM64Arch(goos) } return r } // LoadBinaryInfo will load and store the information from the binary at 'path'. func (bi *BinaryInfo) LoadBinaryInfo(path string, entryPoint uint64, debugInfoDirs []string) error { fi, err := os.Stat(path) if err == nil { bi.lastModified = fi.ModTime() } bi.debugInfoDirectories = debugInfoDirs return bi.AddImage(path, entryPoint) } func loadBinaryInfo(bi *BinaryInfo, image *Image, path string, entryPoint uint64) error { var wg sync.WaitGroup defer wg.Wait() switch bi.GOOS { case "linux", "freebsd": return loadBinaryInfoElf(bi, image, path, entryPoint, &wg) case "windows": return loadBinaryInfoPE(bi, image, path, entryPoint, &wg) case "darwin": return loadBinaryInfoMacho(bi, image, path, entryPoint, &wg) } return errors.New("unsupported operating system") } // GStructOffset returns the offset of the G // struct in thread local storage. func (bi *BinaryInfo) GStructOffset() uint64 { return bi.gStructOffset } // LastModified returns the last modified time of the binary. func (bi *BinaryInfo) LastModified() time.Time { return bi.lastModified } // DwarfReader returns a reader for the dwarf data func (so *Image) DwarfReader() *reader.Reader { return reader.New(so.dwarf) } // Types returns list of types present in the debugged program. func (bi *BinaryInfo) Types() ([]string, error) { types := make([]string, 0, len(bi.types)) for k := range bi.types { types = append(types, k) } return types, nil } // PCToLine converts an instruction address to a file/line/function. func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) { fn := bi.PCToFunc(pc) if fn == nil { return "", 0, nil } f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc) return f, ln, fn } type ErrCouldNotFindLine struct { fileFound bool filename string lineno int } func (err *ErrCouldNotFindLine) Error() string { if err.fileFound { return fmt.Sprintf("could not find statement at %s:%d, please use a line with a statement", err.filename, err.lineno) } return fmt.Sprintf("could not find file %s", err.filename) } // LineToPC converts a file:line into a list of matching memory addresses, // corresponding to the first instruction matching the specified file:line // in the containing function and all its inlined calls. func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pcs []uint64, err error) { fileFound := false var pc uint64 pcsearch: for _, image := range bi.Images { for _, cu := range image.compileUnits { if cu.lineInfo == nil || cu.lineInfo.Lookup[filename] == nil { continue } fileFound = true pc = cu.lineInfo.LineToPC(filename, lineno) if pc != 0 { break pcsearch } } } if pc == 0 { // Check if the line contained a call to a function that was inlined, in // that case it's possible for the line itself to not appear in debug_line // at all, but it will still be in debug_info as the call site for an // inlined subroutine entry. if pcs := bi.inlinedCallLines[fileLine{filename, lineno}]; len(pcs) != 0 { return pcs, nil } return nil, &ErrCouldNotFindLine{fileFound, filename, lineno} } // The code above will find the first occurence of an instruction // corresponding to filename:line. If the function corresponding to that // instruction has been inlined we don't just want to return the first // occurence (which could be either the concrete version of the function or // one of the inlinings) but instead: // - the first instruction corresponding to filename:line in the concrete // version of the function // - the first instruction corresponding to filename:line in each inlined // instance of the function. fn := bi.PCToInlineFunc(pc) if fn == nil { return []uint64{pc}, nil } pcs = make([]uint64, 0, len(fn.InlinedCalls)+1) pcs = appendLineToPCIn(pcs, filename, lineno, fn.cu, fn, fn.Entry, fn.End) for _, call := range fn.InlinedCalls { pcs = appendLineToPCIn(pcs, filename, lineno, call.cu, bi.PCToFunc(call.LowPC), call.LowPC, call.HighPC) } return pcs, nil } func appendLineToPCIn(pcs []uint64, filename string, lineno int, cu *compileUnit, containingFn *Function, lowPC, highPC uint64) []uint64 { var entry uint64 if containingFn != nil { entry = containingFn.Entry } pc := cu.lineInfo.LineToPCIn(filename, lineno, entry, lowPC, highPC) if pc != 0 { return append(pcs, pc) } return pcs } // AllPCsForFileLines returns a map providing all PC addresses for filename and each line in linenos func (bi *BinaryInfo) AllPCsForFileLines(filename string, linenos []int) map[int][]uint64 { r := make(map[int][]uint64) for _, line := range linenos { r[line] = make([]uint64, 0, 1) } for _, image := range bi.Images { for _, cu := range image.compileUnits { if cu.lineInfo != nil && cu.lineInfo.Lookup[filename] != nil { cu.lineInfo.AllPCsForFileLines(filename, r) } } } return r } // PCToFunc returns the concrete function containing the given PC address. // If the PC address belongs to an inlined call it will return the containing function. func (bi *BinaryInfo) PCToFunc(pc uint64) *Function { i := sort.Search(len(bi.Functions), func(i int) bool { fn := bi.Functions[i] return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End) }) if i != len(bi.Functions) { fn := &bi.Functions[i] if fn.Entry <= pc && pc < fn.End { return fn } } return nil } // PCToInlineFunc returns the function containing the given PC address. // If the PC address belongs to an inlined call it will return the inlined function. func (bi *BinaryInfo) PCToInlineFunc(pc uint64) *Function { fn := bi.PCToFunc(pc) dwarfTree, err := fn.cu.image.getDwarfTree(fn.offset) if err != nil { return fn } entries := reader.InlineStack(dwarfTree, pc) if len(entries) == 0 { return fn } fnname, okname := entries[0].Val(dwarf.AttrName).(string) if !okname { return fn } return bi.LookupFunc[fnname] } // PCToImage returns the image containing the given PC address. func (bi *BinaryInfo) PCToImage(pc uint64) *Image { fn := bi.PCToFunc(pc) return bi.funcToImage(fn) } // Image represents a loaded library file (shared object on linux, DLL on windows). type Image struct { Path string StaticBase uint64 addr uint64 index int // index of this object in BinaryInfo.SharedObjects closer io.Closer sepDebugCloser io.Closer dwarf *dwarf.Data dwarfReader *dwarf.Reader loclist2 *loclist.Dwarf2Reader loclist5 *loclist.Dwarf5Reader debugAddr *godwarf.DebugAddrSection typeCache map[dwarf.Offset]godwarf.Type compileUnits []*compileUnit // compileUnits is sorted by increasing DWARF offset dwarfTreeCache *simplelru.LRU // runtimeTypeToDIE maps between the offset of a runtime._type in // runtime.moduledata.types and the offset of the DIE in debug_info. This // map is filled by using the extended attribute godwarf.AttrGoRuntimeType // which was added in go 1.11. runtimeTypeToDIE map[uint64]runtimeTypeDIE loadErrMu sync.Mutex loadErr error } func (image *Image) registerRuntimeTypeToDIE(entry *dwarf.Entry, ardr *reader.Reader) { if off, ok := entry.Val(godwarf.AttrGoRuntimeType).(uint64); ok { if _, ok := image.runtimeTypeToDIE[off]; !ok { image.runtimeTypeToDIE[off+image.StaticBase] = runtimeTypeDIE{entry.Offset, -1} } } } // AddImage adds the specified image to bi, loading data asynchronously. // Addr is the relocated entry point for the executable and staticBase (i.e. // the relocation offset) for all other images. // The first image added must be the executable file. func (bi *BinaryInfo) AddImage(path string, addr uint64) error { // Check if the image is already present. if len(bi.Images) > 0 && !strings.HasPrefix(path, "/") { return nil } for _, image := range bi.Images { if image.Path == path && image.addr == addr { return nil } } // Actually add the image. image := &Image{Path: path, addr: addr, typeCache: make(map[dwarf.Offset]godwarf.Type)} image.dwarfTreeCache, _ = simplelru.NewLRU(dwarfTreeCacheSize, nil) // add Image regardless of error so that we don't attempt to re-add it every time we stop image.index = len(bi.Images) bi.Images = append(bi.Images, image) err := loadBinaryInfo(bi, image, path, addr) if err != nil { bi.Images[len(bi.Images)-1].loadErr = err } return err } // moduleDataToImage finds the image corresponding to the given module data object. func (bi *BinaryInfo) moduleDataToImage(md *moduleData) *Image { return bi.funcToImage(bi.PCToFunc(uint64(md.text))) } // imageToModuleData finds the module data in mds corresponding to the given image. func (bi *BinaryInfo) imageToModuleData(image *Image, mds []moduleData) *moduleData { for _, md := range mds { im2 := bi.moduleDataToImage(&md) if im2.index == image.index { return &md } } return nil } // typeToImage returns the image containing the give type. func (bi *BinaryInfo) typeToImage(typ godwarf.Type) *Image { return bi.Images[typ.Common().Index] } var errBinaryInfoClose = errors.New("multiple errors closing executable files") // Close closes all internal readers. func (bi *BinaryInfo) Close() error { var errs []error for _, image := range bi.Images { if err := image.Close(); err != nil { errs = append(errs, err) } } switch len(errs) { case 0: return nil case 1: return errs[0] default: return errBinaryInfoClose } } func (image *Image) Close() error { var err1, err2 error if image.sepDebugCloser != nil { err := image.sepDebugCloser.Close() if err != nil { err1 = fmt.Errorf("closing shared object %q (split dwarf): %v", image.Path, err) } } if image.closer != nil { err := image.closer.Close() if err != nil { err2 = fmt.Errorf("closing shared object %q: %v", image.Path, err) } } if err1 != nil && err2 != nil { return errBinaryInfoClose } if err1 != nil { return err1 } return err2 } func (image *Image) setLoadError(fmtstr string, args ...interface{}) { image.loadErrMu.Lock() image.loadErr = fmt.Errorf(fmtstr, args...) image.loadErrMu.Unlock() } // LoadError returns any error incurred while loading this image. func (image *Image) LoadError() error { return image.loadErr } func (image *Image) getDwarfTree(off dwarf.Offset) (*godwarf.Tree, error) { if r, ok := image.dwarfTreeCache.Get(off); ok { return r.(*godwarf.Tree), nil } r, err := godwarf.LoadTree(off, image.dwarf, image.StaticBase) if err != nil { return nil, err } image.dwarfTreeCache.Add(off, r) return r, nil } type nilCloser struct{} func (c *nilCloser) Close() error { return nil } // LoadImageFromData creates a new Image, using the specified data, and adds it to bi. // This is used for debugging BinaryInfo, you should use LoadBinary instead. func (bi *BinaryInfo) LoadImageFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) { image := &Image{} image.closer = (*nilCloser)(nil) image.sepDebugCloser = (*nilCloser)(nil) image.dwarf = dwdata image.typeCache = make(map[dwarf.Offset]godwarf.Type) image.dwarfTreeCache, _ = simplelru.NewLRU(dwarfTreeCacheSize, nil) if debugFrameBytes != nil { bi.frameEntries, _ = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), 0, bi.Arch.PtrSize(), 0) } image.loclist2 = loclist.NewDwarf2Reader(debugLocBytes, bi.Arch.PtrSize()) bi.loadDebugInfoMaps(image, nil, debugLineBytes, nil, nil) bi.Images = append(bi.Images, image) } func (bi *BinaryInfo) locationExpr(entry godwarf.Entry, attr dwarf.Attr, pc uint64) ([]byte, *locationExpr, error) { //TODO(aarzilli): handle DW_FORM_loclistx attribute form new in DWARFv5 a := entry.Val(attr) if a == nil { return nil, nil, fmt.Errorf("no location attribute %s", attr) } if instr, ok := a.([]byte); ok { return instr, &locationExpr{isBlock: true, instr: instr}, nil } off, ok := a.(int64) if !ok { return nil, nil, fmt.Errorf("could not interpret location attribute %s", attr) } instr := bi.loclistEntry(off, pc) if instr == nil { return nil, nil, fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc) } return instr, &locationExpr{pc: pc, off: off, instr: instr}, nil } type locationExpr struct { isBlock bool isEscaped bool off int64 pc uint64 instr []byte } func (le *locationExpr) String() string { if le == nil { return "" } var descr bytes.Buffer if le.isBlock { fmt.Fprintf(&descr, "[block] ") op.PrettyPrint(&descr, le.instr) } else { fmt.Fprintf(&descr, "[%#x:%#x] ", le.off, le.pc) op.PrettyPrint(&descr, le.instr) } if le.isEscaped { fmt.Fprintf(&descr, " (escaped)") } return descr.String() } // LocationCovers returns the list of PC addresses that is covered by the // location attribute 'attr' of entry 'entry'. func (bi *BinaryInfo) LocationCovers(entry *dwarf.Entry, attr dwarf.Attr) ([][2]uint64, error) { a := entry.Val(attr) if a == nil { return nil, fmt.Errorf("attribute %s not found", attr) } if _, isblock := a.([]byte); isblock { return [][2]uint64{[2]uint64{0, ^uint64(0)}}, nil } off, ok := a.(int64) if !ok { return nil, fmt.Errorf("attribute %s of unsupported type %T", attr, a) } cu := bi.Images[0].findCompileUnitForOffset(entry.Offset) if cu == nil { return nil, errors.New("could not find compile unit") } if cu.Version >= 5 && cu.image.loclist5 != nil { return nil, errors.New("LocationCovers does not support DWARFv5") } image := cu.image base := cu.lowPC if image == nil || image.loclist2.Empty() { return nil, errors.New("malformed executable") } r := [][2]uint64{} var e loclist.Entry image.loclist2.Seek(int(off)) for image.loclist2.Next(&e) { if e.BaseAddressSelection() { base = e.HighPC continue } r = append(r, [2]uint64{e.LowPC + base, e.HighPC + base}) } return r, nil } // Location returns the location described by attribute attr of entry. // This will either be an int64 address or a slice of Pieces for locations // that don't correspond to a single memory address (registers, composite // locations). func (bi *BinaryInfo) Location(entry godwarf.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, *locationExpr, error) { instr, descr, err := bi.locationExpr(entry, attr, pc) if err != nil { return 0, nil, nil, err } addr, pieces, err := op.ExecuteStackProgram(regs, instr, bi.Arch.PtrSize()) return addr, pieces, descr, err } // loclistEntry returns the loclist entry in the loclist starting at off, // for address pc. func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte { var base uint64 image := bi.Images[0] cu := bi.findCompileUnit(pc) if cu != nil { base = cu.lowPC image = cu.image } if image == nil { return nil } var loclist loclist.Reader = image.loclist2 var debugAddr *godwarf.DebugAddr if cu != nil && cu.Version >= 5 && image.loclist5 != nil { loclist = image.loclist5 if addrBase, ok := cu.entry.Val(dwarfAttrAddrBase).(int64); ok { debugAddr = image.debugAddr.GetSubsection(uint64(addrBase)) } } if loclist.Empty() { return nil } e, err := loclist.Find(int(off), image.StaticBase, base, pc, debugAddr) if err != nil { bi.logger.Errorf("error reading loclist section: %v", err) return nil } if e != nil { return e.Instr } return nil } // findCompileUnit returns the compile unit containing address pc. func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit { for _, image := range bi.Images { for _, cu := range image.compileUnits { for _, rng := range cu.ranges { if pc >= rng[0] && pc < rng[1] { return cu } } } } return nil } func (bi *Image) findCompileUnitForOffset(off dwarf.Offset) *compileUnit { i := sort.Search(len(bi.compileUnits), func(i int) bool { return bi.compileUnits[i].offset >= off }) if i > 0 { i-- } return bi.compileUnits[i] } // Producer returns the value of DW_AT_producer. func (bi *BinaryInfo) Producer() string { for _, cu := range bi.Images[0].compileUnits { if cu.isgo && cu.producer != "" { return cu.producer } } return "" } // Type returns the Dwarf type entry at `offset`. func (image *Image) Type(offset dwarf.Offset) (godwarf.Type, error) { return godwarf.ReadType(image.dwarf, image.index, offset, image.typeCache) } // funcToImage returns the Image containing function fn, or the // executable file as a fallback. func (bi *BinaryInfo) funcToImage(fn *Function) *Image { if fn == nil { return bi.Images[0] } return fn.cu.image } // parseDebugFrameGeneral parses a debug_frame and a eh_frame section. // At least one of the two must be present and parsed correctly, if // debug_frame is present it must be parsable correctly. func (bi *BinaryInfo) parseDebugFrameGeneral(image *Image, debugFrameBytes []byte, debugFrameName string, debugFrameErr error, ehFrameBytes []byte, ehFrameAddr uint64, ehFrameName string, byteOrder binary.ByteOrder) { if debugFrameBytes == nil && ehFrameBytes == nil { image.setLoadError("could not get %s section: %v", debugFrameName, debugFrameErr) return } if debugFrameBytes != nil { fe, err := frame.Parse(debugFrameBytes, byteOrder, image.StaticBase, bi.Arch.PtrSize(), 0) if err != nil { image.setLoadError("could not parse %s section: %v", debugFrameName, err) return } bi.frameEntries = bi.frameEntries.Append(fe) } if ehFrameBytes != nil && ehFrameAddr > 0 { fe, err := frame.Parse(ehFrameBytes, byteOrder, image.StaticBase, bi.Arch.PtrSize(), ehFrameAddr) if err != nil { if debugFrameBytes == nil { image.setLoadError("could not parse %s section: %v", ehFrameName, err) return } bi.logger.Warnf("could not parse %s section: %v", ehFrameName, err) return } bi.frameEntries = bi.frameEntries.Append(fe) } } // ELF /////////////////////////////////////////////////////////////// // ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no // build-id note on the binary, so LoadBinaryInfoElf will return // the error message coming from elfFile.DWARF() instead. type ErrNoBuildIDNote struct{} func (e *ErrNoBuildIDNote) Error() string { return "can't find build-id note on binary" } // openSeparateDebugInfo searches for a file containing the separate // debug info for the binary using the "build ID" method as described // in GDB's documentation [1], and if found returns two handles, one // for the bare file, and another for its corresponding elf.File. // [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html // // Alternatively, if the debug file cannot be found be the build-id, Delve // will look in directories specified by the debug-info-directories config value. func (bi *BinaryInfo) openSeparateDebugInfo(image *Image, exe *elf.File, debugInfoDirectories []string) (*os.File, *elf.File, error) { var debugFilePath string for _, dir := range debugInfoDirectories { var potentialDebugFilePath string if strings.Contains(dir, "build-id") { desc1, desc2, err := parseBuildID(exe) if err != nil { continue } potentialDebugFilePath = fmt.Sprintf("%s/%s/%s.debug", dir, desc1, desc2) } else if strings.HasPrefix(image.Path, "/proc") { path, err := filepath.EvalSymlinks(image.Path) if err == nil { potentialDebugFilePath = fmt.Sprintf("%s/%s.debug", dir, filepath.Base(path)) } } else { potentialDebugFilePath = fmt.Sprintf("%s/%s.debug", dir, filepath.Base(image.Path)) } _, err := os.Stat(potentialDebugFilePath) if err == nil { debugFilePath = potentialDebugFilePath break } } if debugFilePath == "" { return nil, nil, ErrNoDebugInfoFound } sepFile, err := os.OpenFile(debugFilePath, 0, os.ModePerm) if err != nil { return nil, nil, errors.New("can't open separate debug file: " + err.Error()) } elfFile, err := elf.NewFile(sepFile) if err != nil { sepFile.Close() return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, err.Error()) } if !supportedLinuxArch[elfFile.Machine] { sepFile.Close() return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugFilePath, &ErrUnsupportedArch{os: "linux", cpuArch: elfFile.Machine}) } return sepFile, elfFile, nil } func parseBuildID(exe *elf.File) (string, string, error) { buildid := exe.Section(".note.gnu.build-id") if buildid == nil { return "", "", &ErrNoBuildIDNote{} } br := buildid.Open() bh := new(buildIDHeader) if err := binary.Read(br, binary.LittleEndian, bh); err != nil { return "", "", errors.New("can't read build-id header: " + err.Error()) } name := make([]byte, bh.Namesz) if err := binary.Read(br, binary.LittleEndian, name); err != nil { return "", "", errors.New("can't read build-id name: " + err.Error()) } if strings.TrimSpace(string(name)) != "GNU\x00" { return "", "", errors.New("invalid build-id signature") } descBinary := make([]byte, bh.Descsz) if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil { return "", "", errors.New("can't read build-id desc: " + err.Error()) } desc := hex.EncodeToString(descBinary) return desc[:2], desc[2:], nil } // loadBinaryInfoElf specifically loads information from an ELF binary. func loadBinaryInfoElf(bi *BinaryInfo, image *Image, path string, addr uint64, wg *sync.WaitGroup) error { exe, err := os.OpenFile(path, 0, os.ModePerm) if err != nil { return err } image.closer = exe elfFile, err := elf.NewFile(exe) if err != nil { return err } if !supportedLinuxArch[elfFile.Machine] { return &ErrUnsupportedArch{os: "linux", cpuArch: elfFile.Machine} } if image.index == 0 { // adding executable file: // - addr is entryPoint therefore staticBase needs to be calculated by // subtracting the entry point specified in the executable file from addr. // - memory address of the .dynamic section needs to be recorded in // BinaryInfo so that we can find loaded libraries. if addr != 0 { image.StaticBase = addr - elfFile.Entry } else if elfFile.Type == elf.ET_DYN { return ErrCouldNotDetermineRelocation } if dynsec := elfFile.Section(".dynamic"); dynsec != nil { bi.ElfDynamicSection.Addr = dynsec.Addr + image.StaticBase bi.ElfDynamicSection.Size = dynsec.Size } } else { image.StaticBase = addr } dwarfFile := elfFile var debugInfoBytes []byte image.dwarf, err = elfFile.DWARF() if err != nil { var sepFile *os.File var serr error sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(image, elfFile, bi.debugInfoDirectories) if serr != nil { return serr } image.sepDebugCloser = sepFile image.dwarf, err = dwarfFile.DWARF() if err != nil { return err } } debugInfoBytes, err = godwarf.GetDebugSectionElf(dwarfFile, "info") if err != nil { return err } image.dwarfReader = image.dwarf.Reader() debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line") if err != nil { return err } debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc") image.loclist2 = loclist.NewDwarf2Reader(debugLocBytes, bi.Arch.PtrSize()) debugLoclistBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loclists") image.loclist5 = loclist.NewDwarf5Reader(debugLoclistBytes) debugAddrBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "addr") image.debugAddr = godwarf.ParseAddr(debugAddrBytes) wg.Add(3) go bi.parseDebugFrameElf(image, dwarfFile, debugInfoBytes, wg) go bi.loadDebugInfoMaps(image, debugInfoBytes, debugLineBytes, wg, nil) go bi.loadSymbolName(image, elfFile, wg) if image.index == 0 { // determine g struct offset only when loading the executable file wg.Add(1) go bi.setGStructOffsetElf(image, dwarfFile, wg) } return nil } // _STT_FUNC is a code object, see /usr/include/elf.h for a full definition. const _STT_FUNC = 2 func (bi *BinaryInfo) loadSymbolName(image *Image, file *elf.File, wg *sync.WaitGroup) { defer wg.Done() if bi.SymNames == nil { bi.SymNames = make(map[uint64]*elf.Symbol) } symSecs, _ := file.Symbols() if symSecs != nil { for _, symSec := range symSecs { if symSec.Info == _STT_FUNC { // TODO(chainhelen), need to parse others types. s := symSec bi.SymNames[symSec.Value+image.StaticBase] = &s } } } } func (bi *BinaryInfo) parseDebugFrameElf(image *Image, exe *elf.File, debugInfoBytes []byte, wg *sync.WaitGroup) { defer wg.Done() debugFrameData, debugFrameErr := godwarf.GetDebugSectionElf(exe, "frame") ehFrameSection := exe.Section(".eh_frame") var ehFrameData []byte var ehFrameAddr uint64 if ehFrameSection != nil { ehFrameAddr = ehFrameSection.Addr ehFrameData, _ = ehFrameSection.Data() } bi.parseDebugFrameGeneral(image, debugFrameData, ".debug_frame", debugFrameErr, ehFrameData, ehFrameAddr, ".eh_frame", frame.DwarfEndian(debugInfoBytes)) } func (bi *BinaryInfo) setGStructOffsetElf(image *Image, exe *elf.File, wg *sync.WaitGroup) { defer wg.Done() // This is a bit arcane. Essentially: // - If the program is pure Go, it can do whatever it wants, and puts the G // pointer at %fs-8 on 64 bit. // - %Gs is the index of private storage in GDT on 32 bit, and puts the G // pointer at -4(tls). // - Otherwise, Go asks the external linker to place the G pointer by // emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen // offset in libc's TLS block. // - On ARM64 (but really, any architecture other than i386 and 86x64) the // offset is calculate using runtime.tls_g and the formula is different. var tls *elf.Prog for _, prog := range exe.Progs { if prog.Type == elf.PT_TLS { tls = prog break } } switch exe.Machine { case elf.EM_X86_64, elf.EM_386: tlsg := getSymbol(image, exe, "runtime.tlsg") if tlsg == nil || tls == nil { bi.gStructOffset = ^uint64(bi.Arch.PtrSize()) + 1 //-ptrSize return } // According to https://reviews.llvm.org/D61824, linkers must pad the actual // size of the TLS segment to ensure that (tlsoffset%align) == (vaddr%align). // This formula, copied from the lld code, matches that. // https://github.com/llvm-mirror/lld/blob/9aef969544981d76bea8e4d1961d3a6980980ef9/ELF/InputSection.cpp#L643 memsz := tls.Memsz + (-tls.Vaddr-tls.Memsz)&(tls.Align-1) // The TLS register points to the end of the TLS block, which is // tls.Memsz long. runtime.tlsg is an offset from the beginning of that block. bi.gStructOffset = ^(memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value case elf.EM_AARCH64: tlsg := getSymbol(image, exe, "runtime.tls_g") if tlsg == nil || tls == nil { bi.gStructOffset = 2 * uint64(bi.Arch.PtrSize()) return } bi.gStructOffset = tlsg.Value + uint64(bi.Arch.PtrSize()*2) + ((tls.Vaddr - uint64(bi.Arch.PtrSize()*2)) & (tls.Align - 1)) default: // we should never get here panic("architecture not supported") } } func getSymbol(image *Image, exe *elf.File, name string) *elf.Symbol { symbols, err := exe.Symbols() if err != nil { image.setLoadError("could not parse ELF symbols: %v", err) return nil } for _, symbol := range symbols { if symbol.Name == name { s := symbol return &s } } return nil } // PE //////////////////////////////////////////////////////////////// const _IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE = 0x0040 // loadBinaryInfoPE specifically loads information from a PE binary. func loadBinaryInfoPE(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error { peFile, closer, err := openExecutablePathPE(path) if err != nil { return err } image.closer = closer cpuArch := _PEMachine(peFile.Machine) if !supportedWindowsArch[cpuArch] { return &ErrUnsupportedArch{os: "windows", cpuArch: cpuArch} } image.dwarf, err = peFile.DWARF() if err != nil { return err } debugInfoBytes, err := godwarf.GetDebugSectionPE(peFile, "info") if err != nil { return err } //TODO(aarzilli): actually test this when Go supports PIE buildmode on Windows. opth := peFile.OptionalHeader.(*pe.OptionalHeader64) if entryPoint != 0 { image.StaticBase = entryPoint - opth.ImageBase } else { if opth.DllCharacteristics&_IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE != 0 { return ErrCouldNotDetermineRelocation } } image.dwarfReader = image.dwarf.Reader() debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line") if err != nil { return err } debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc") image.loclist2 = loclist.NewDwarf2Reader(debugLocBytes, bi.Arch.PtrSize()) debugLoclistBytes, _ := godwarf.GetDebugSectionPE(peFile, "loclists") image.loclist5 = loclist.NewDwarf5Reader(debugLoclistBytes) debugAddrBytes, _ := godwarf.GetDebugSectionPE(peFile, "addr") image.debugAddr = godwarf.ParseAddr(debugAddrBytes) wg.Add(2) go bi.parseDebugFramePE(image, peFile, debugInfoBytes, wg) go bi.loadDebugInfoMaps(image, debugInfoBytes, debugLineBytes, wg, nil) // Use ArbitraryUserPointer (0x28) as pointer to pointer // to G struct per: // https://golang.org/src/runtime/cgo/gcc_windows_amd64.c bi.gStructOffset = 0x28 return nil } func openExecutablePathPE(path string) (*pe.File, io.Closer, error) { f, err := os.OpenFile(path, 0, os.ModePerm) if err != nil { return nil, nil, err } peFile, err := pe.NewFile(f) if err != nil { f.Close() return nil, nil, err } return peFile, f, nil } func (bi *BinaryInfo) parseDebugFramePE(image *Image, exe *pe.File, debugInfoBytes []byte, wg *sync.WaitGroup) { defer wg.Done() debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame") bi.parseDebugFrameGeneral(image, debugFrameBytes, ".debug_frame", err, nil, 0, "", frame.DwarfEndian(debugInfoBytes)) } // Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) { for _, s := range f.Symbols { if s.Name != name { continue } if s.SectionNumber <= 0 { return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber) } if len(f.Sections) < int(s.SectionNumber) { return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections)) } return s, nil } return nil, fmt.Errorf("no %s symbol found", name) } // MACH-O //////////////////////////////////////////////////////////// // loadBinaryInfoMacho specifically loads information from a Mach-O binary. func loadBinaryInfoMacho(bi *BinaryInfo, image *Image, path string, entryPoint uint64, wg *sync.WaitGroup) error { exe, err := macho.Open(path) if err != nil { return err } if entryPoint != 0 { // This is a little bit hacky. We use the entryPoint variable, but it // actually holds the address of the mach-o header. We can use this // to calculate the offset to the non-aslr location of the mach-o header // (which is 0x100000000) image.StaticBase = entryPoint - 0x100000000 } image.closer = exe if !supportedDarwinArch[exe.Cpu] { return &ErrUnsupportedArch{os: "darwin", cpuArch: exe.Cpu} } image.dwarf, err = exe.DWARF() if err != nil { return err } debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info") if err != nil { return err } image.dwarfReader = image.dwarf.Reader() debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line") if err != nil { return err } debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc") image.loclist2 = loclist.NewDwarf2Reader(debugLocBytes, bi.Arch.PtrSize()) debugLoclistBytes, _ := godwarf.GetDebugSectionMacho(exe, "loclists") image.loclist5 = loclist.NewDwarf5Reader(debugLoclistBytes) debugAddrBytes, _ := godwarf.GetDebugSectionMacho(exe, "addr") image.debugAddr = godwarf.ParseAddr(debugAddrBytes) wg.Add(2) go bi.parseDebugFrameMacho(image, exe, debugInfoBytes, wg) go bi.loadDebugInfoMaps(image, debugInfoBytes, debugLineBytes, wg, bi.setGStructOffsetMacho) return nil } func (bi *BinaryInfo) setGStructOffsetMacho() { // In go1.11 it's 0x30, before 0x8a0, see: // https://github.com/golang/go/issues/23617 // and go commit b3a854c733257c5249c3435ffcee194f8439676a producer := bi.Producer() if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) { bi.gStructOffset = 0x30 return } bi.gStructOffset = 0x8a0 } func (bi *BinaryInfo) parseDebugFrameMacho(image *Image, exe *macho.File, debugInfoBytes []byte, wg *sync.WaitGroup) { defer wg.Done() debugFrameBytes, debugFrameErr := godwarf.GetDebugSectionMacho(exe, "frame") ehFrameSection := exe.Section("__eh_frame") var ehFrameBytes []byte var ehFrameAddr uint64 if ehFrameSection != nil { ehFrameAddr = ehFrameSection.Addr ehFrameBytes, _ = ehFrameSection.Data() } bi.parseDebugFrameGeneral(image, debugFrameBytes, "__debug_frame", debugFrameErr, ehFrameBytes, ehFrameAddr, "__eh_frame", frame.DwarfEndian(debugInfoBytes)) } // Do not call this function directly it isn't able to deal correctly with package paths func (bi *BinaryInfo) findType(name string) (godwarf.Type, error) { ref, found := bi.types[name] if !found { return nil, reader.TypeNotFoundErr } image := bi.Images[ref.imageIndex] return godwarf.ReadType(image.dwarf, ref.imageIndex, ref.offset, image.typeCache) } func (bi *BinaryInfo) findTypeExpr(expr ast.Expr) (godwarf.Type, error) { if lit, islit := expr.(*ast.BasicLit); islit && lit.Kind == token.STRING { // Allow users to specify type names verbatim as quoted // string. Useful as a catch-all workaround for cases where we don't // parse/serialize types correctly or can not resolve package paths. typn, _ := strconv.Unquote(lit.Value) // Check if the type in question is an array type, in which case we try to // fake it. if len(typn) > 0 && typn[0] == '[' { closedBrace := strings.Index(typn, "]") if closedBrace > 1 { n, err := strconv.Atoi(typn[1:closedBrace]) if err == nil { return bi.findArrayType(n, typn[closedBrace+1:]) } } } return bi.findType(typn) } bi.expandPackagesInType(expr) if snode, ok := expr.(*ast.StarExpr); ok { // Pointer types only appear in the dwarf informations when // a pointer to the type is used in the target program, here // we create a pointer type on the fly so that the user can // specify a pointer to any variable used in the target program ptyp, err := bi.findTypeExpr(snode.X) if err != nil { return nil, err } return pointerTo(ptyp, bi.Arch), nil } if anode, ok := expr.(*ast.ArrayType); ok { // Array types (for example [N]byte) are only present in DWARF if they are // used by the program, but it's convenient to make all of them available // to the user for two reasons: // 1. to allow reading arbitrary memory byte-by-byte (by casting an // address to an array of bytes). // 2. to read the contents of a channel's buffer (we create fake array // types for them) alen, litlen := anode.Len.(*ast.BasicLit) if litlen && alen.Kind == token.INT { n, _ := strconv.Atoi(alen.Value) return bi.findArrayType(n, exprToString(anode.Elt)) } } return bi.findType(exprToString(expr)) } func (bi *BinaryInfo) findArrayType(n int, etyp string) (godwarf.Type, error) { switch etyp { case "byte", "uint8": etyp = "uint8" fallthrough default: btyp, err := bi.findType(etyp) if err != nil { return nil, err } return fakeArrayType(uint64(n), btyp), nil } } func complexType(typename string) bool { for _, ch := range typename { switch ch { case '*', '[', '<', '{', '(', ' ': return true } } return false } func (bi *BinaryInfo) registerTypeToPackageMap(entry *dwarf.Entry) { if entry.Tag != dwarf.TagTypedef && entry.Tag != dwarf.TagBaseType && entry.Tag != dwarf.TagClassType && entry.Tag != dwarf.TagStructType { return } typename, ok := entry.Val(dwarf.AttrName).(string) if !ok || complexType(typename) { return } dot := strings.LastIndex(typename, ".") if dot < 0 { return } path := typename[:dot] slash := strings.LastIndex(path, "/") if slash < 0 || slash+1 >= len(path) { return } name := path[slash+1:] bi.PackageMap[name] = []string{path} } func (bi *BinaryInfo) loadDebugInfoMaps(image *Image, debugInfoBytes, debugLineBytes []byte, wg *sync.WaitGroup, cont func()) { if wg != nil { defer wg.Done() } if bi.types == nil { bi.types = make(map[string]dwarfRef) } if bi.consts == nil { bi.consts = make(map[dwarfRef]*constantType) } if bi.PackageMap == nil { bi.PackageMap = make(map[string][]string) } if bi.inlinedCallLines == nil { bi.inlinedCallLines = make(map[fileLine][]uint64) } image.runtimeTypeToDIE = make(map[uint64]runtimeTypeDIE) ctxt := newLoadDebugInfoMapsContext(bi, image, util.ReadUnitVersions(debugInfoBytes)) reader := image.DwarfReader() for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() { if err != nil { image.setLoadError("error reading debug_info: %v", err) break } switch entry.Tag { case dwarf.TagCompileUnit: cu := &compileUnit{} cu.image = image cu.entry = entry cu.offset = entry.Offset cu.Version = ctxt.offsetToVersion[cu.offset] if lang, _ := entry.Val(dwarf.AttrLanguage).(int64); lang == dwarfGoLanguage { cu.isgo = true } cu.name, _ = entry.Val(dwarf.AttrName).(string) compdir, _ := entry.Val(dwarf.AttrCompDir).(string) if compdir != "" { cu.name = filepath.Join(compdir, cu.name) } cu.ranges, _ = image.dwarf.Ranges(entry) for i := range cu.ranges { cu.ranges[i][0] += image.StaticBase cu.ranges[i][1] += image.StaticBase } if len(cu.ranges) >= 1 { cu.lowPC = cu.ranges[0][0] } lineInfoOffset, hasLineInfo := entry.Val(dwarf.AttrStmtList).(int64) if hasLineInfo && lineInfoOffset >= 0 && lineInfoOffset < int64(len(debugLineBytes)) { var logfn func(string, ...interface{}) if logflags.DebugLineErrors() { logger := logrus.New().WithFields(logrus.Fields{"layer": "dwarf-line"}) logger.Logger.Level = logrus.DebugLevel logfn = func(fmt string, args ...interface{}) { logger.Printf(fmt, args) } } cu.lineInfo = line.Parse(compdir, bytes.NewBuffer(debugLineBytes[lineInfoOffset:]), logfn, image.StaticBase, bi.GOOS == "windows", bi.Arch.PtrSize()) } cu.producer, _ = entry.Val(dwarf.AttrProducer).(string) if cu.isgo && cu.producer != "" { semicolon := strings.Index(cu.producer, ";") if semicolon < 0 { cu.optimized = goversion.ProducerAfterOrEqual(cu.producer, 1, 10) } else { cu.optimized = !strings.Contains(cu.producer[semicolon:], "-N") || !strings.Contains(cu.producer[semicolon:], "-l") cu.producer = cu.producer[:semicolon] } } gopkg, _ := entry.Val(godwarf.AttrGoPackageName).(string) if cu.isgo && gopkg != "" { bi.PackageMap[gopkg] = append(bi.PackageMap[gopkg], escapePackagePath(strings.Replace(cu.name, "\\", "/", -1))) } image.compileUnits = append(image.compileUnits, cu) if entry.Children { bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu) } case dwarf.TagPartialUnit: reader.SkipChildren() default: // ignore unknown tags reader.SkipChildren() } } sort.Sort(compileUnitsByOffset(image.compileUnits)) sort.Sort(functionsDebugInfoByEntry(bi.Functions)) sort.Sort(packageVarsByAddr(bi.packageVars)) bi.LookupFunc = make(map[string]*Function) for i := range bi.Functions { bi.LookupFunc[bi.Functions[i].Name] = &bi.Functions[i] } for _, cu := range image.compileUnits { if cu.lineInfo != nil { for _, fileEntry := range cu.lineInfo.FileNames { bi.Sources = append(bi.Sources, fileEntry.Path) } } } sort.Strings(bi.Sources) bi.Sources = uniq(bi.Sources) if cont != nil { cont() } } // loadDebugInfoMapsCompileUnit loads entry from a single compile unit. func (bi *BinaryInfo) loadDebugInfoMapsCompileUnit(ctxt *loadDebugInfoMapsContext, image *Image, reader *reader.Reader, cu *compileUnit) { hasAttrGoPkgName := goversion.ProducerAfterOrEqual(cu.producer, 1, 13) depth := 0 for entry, err := reader.Next(); entry != nil; entry, err = reader.Next() { if err != nil { image.setLoadError("error reading debug_info: %v", err) return } switch entry.Tag { case 0: if depth == 0 { return } else { depth-- } case dwarf.TagImportedUnit: bi.loadDebugInfoMapsImportedUnit(entry, ctxt, image, cu) reader.SkipChildren() case dwarf.TagArrayType, dwarf.TagBaseType, dwarf.TagClassType, dwarf.TagStructType, dwarf.TagUnionType, dwarf.TagConstType, dwarf.TagVolatileType, dwarf.TagRestrictType, dwarf.TagEnumerationType, dwarf.TagPointerType, dwarf.TagSubroutineType, dwarf.TagTypedef, dwarf.TagUnspecifiedType: if name, ok := entry.Val(dwarf.AttrName).(string); ok { if !cu.isgo { name = "C." + name } if _, exists := bi.types[name]; !exists { bi.types[name] = dwarfRef{image.index, entry.Offset} } } if cu != nil && cu.isgo && !hasAttrGoPkgName { bi.registerTypeToPackageMap(entry) } image.registerRuntimeTypeToDIE(entry, ctxt.ardr) reader.SkipChildren() case dwarf.TagVariable: if n, ok := entry.Val(dwarf.AttrName).(string); ok { var addr uint64 if loc, ok := entry.Val(dwarf.AttrLocation).([]byte); ok { if len(loc) == bi.Arch.PtrSize()+1 && op.Opcode(loc[0]) == op.DW_OP_addr { addr, _ = util.ReadUintRaw(bytes.NewReader(loc[1:]), binary.LittleEndian, bi.Arch.PtrSize()) } } if !cu.isgo { n = "C." + n } if _, known := ctxt.knownPackageVars[n]; !known { bi.packageVars = append(bi.packageVars, packageVar{n, cu, entry.Offset, addr + image.StaticBase}) } } reader.SkipChildren() case dwarf.TagConstant: name, okName := entry.Val(dwarf.AttrName).(string) typ, okType := entry.Val(dwarf.AttrType).(dwarf.Offset) val, okVal := entry.Val(dwarf.AttrConstValue).(int64) if okName && okType && okVal { if !cu.isgo { name = "C." + name } ct := bi.consts[dwarfRef{image.index, typ}] if ct == nil { ct = &constantType{} bi.consts[dwarfRef{image.index, typ}] = ct } ct.values = append(ct.values, constantValue{name: name, fullName: name, value: val}) } reader.SkipChildren() case dwarf.TagSubprogram: inlined := false if inval, ok := entry.Val(dwarf.AttrInline).(int64); ok { inlined = inval == 1 } if inlined { bi.addAbstractSubprogram(entry, ctxt, reader, image, cu) } else { originOffset, hasAbstractOrigin := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if hasAbstractOrigin { bi.addConcreteInlinedSubprogram(entry, originOffset, ctxt, reader, cu) } else { bi.addConcreteSubprogram(entry, ctxt, reader, cu) } } default: if entry.Children { depth++ } } } } // loadDebugInfoMapsImportedUnit loads entries into cu from the partial unit // referenced in a DW_TAG_imported_unit entry. func (bi *BinaryInfo) loadDebugInfoMapsImportedUnit(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, image *Image, cu *compileUnit) { off, ok := entry.Val(dwarf.AttrImport).(dwarf.Offset) if !ok { return } reader := image.DwarfReader() reader.Seek(off) imentry, err := reader.Next() if err != nil { return } if imentry.Tag != dwarf.TagPartialUnit { return } bi.loadDebugInfoMapsCompileUnit(ctxt, image, reader, cu) } // addAbstractSubprogram adds the abstract entry for an inlined function. func (bi *BinaryInfo) addAbstractSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, image *Image, cu *compileUnit) { name, ok := subprogramEntryName(entry, cu) if !ok { bi.logger.Warnf("reading debug_info: abstract subprogram without name at %#x", entry.Offset) if entry.Children { reader.SkipChildren() } return } if entry.Children { bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu) } originIdx := ctxt.lookupAbstractOrigin(bi, entry.Offset) fn := &bi.Functions[originIdx] fn.Name = name fn.offset = entry.Offset fn.cu = cu } // addConcreteInlinedSubprogram adds the concrete entry of a subprogram that was also inlined. func (bi *BinaryInfo) addConcreteInlinedSubprogram(entry *dwarf.Entry, originOffset dwarf.Offset, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) { lowpc, highpc, ok := subprogramEntryRange(entry, cu.image) if !ok { bi.logger.Warnf("reading debug_info: concrete inlined subprogram without address range at %#x", entry.Offset) if entry.Children { reader.SkipChildren() } return } originIdx := ctxt.lookupAbstractOrigin(bi, originOffset) fn := &bi.Functions[originIdx] fn.offset = entry.Offset fn.Entry = lowpc fn.End = highpc if entry.Children { bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu) } } // addConcreteSubprogram adds a concrete subprogram (a normal subprogram // that doesn't have abstract or inlined entries) func (bi *BinaryInfo) addConcreteSubprogram(entry *dwarf.Entry, ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) { lowpc, highpc, ok := subprogramEntryRange(entry, cu.image) if !ok { bi.logger.Warnf("reading debug_info: concrete subprogram without address range at %#x", entry.Offset) if entry.Children { reader.SkipChildren() } return } name, ok := subprogramEntryName(entry, cu) if !ok { bi.logger.Warnf("reading debug_info: concrete subprogram without name at %#x", entry.Offset) if entry.Children { reader.SkipChildren() } return } fn := Function{ Name: name, Entry: lowpc, End: highpc, offset: entry.Offset, cu: cu, } bi.Functions = append(bi.Functions, fn) if entry.Children { bi.loadDebugInfoMapsInlinedCalls(ctxt, reader, cu) } } func subprogramEntryName(entry *dwarf.Entry, cu *compileUnit) (string, bool) { name, ok := entry.Val(dwarf.AttrName).(string) if !ok { return "", false } if !cu.isgo { name = "C." + name } return name, true } func subprogramEntryRange(entry *dwarf.Entry, image *Image) (lowpc, highpc uint64, ok bool) { ok = false if ranges, _ := image.dwarf.Ranges(entry); len(ranges) >= 1 { ok = true lowpc = ranges[0][0] + image.StaticBase highpc = ranges[0][1] + image.StaticBase } return lowpc, highpc, ok } func (bi *BinaryInfo) loadDebugInfoMapsInlinedCalls(ctxt *loadDebugInfoMapsContext, reader *reader.Reader, cu *compileUnit) { for { entry, err := reader.Next() if err != nil { cu.image.setLoadError("error reading debug_info: %v", err) return } switch entry.Tag { case 0: return case dwarf.TagInlinedSubroutine: originOffset, ok := entry.Val(dwarf.AttrAbstractOrigin).(dwarf.Offset) if !ok { bi.logger.Warnf("reading debug_info: inlined call without origin offset at %#x", entry.Offset) reader.SkipChildren() continue } originIdx := ctxt.lookupAbstractOrigin(bi, originOffset) fn := &bi.Functions[originIdx] lowpc, highpc, ok := subprogramEntryRange(entry, cu.image) if !ok { bi.logger.Warnf("reading debug_info: inlined call without address range at %#x", entry.Offset) reader.SkipChildren() continue } callfileidx, ok1 := entry.Val(dwarf.AttrCallFile).(int64) callline, ok2 := entry.Val(dwarf.AttrCallLine).(int64) if !ok1 || !ok2 { bi.logger.Warnf("reading debug_info: inlined call without CallFile/CallLine at %#x", entry.Offset) reader.SkipChildren() continue } callfile, cferr := cu.filePath(int(callfileidx), entry) if cferr != nil { bi.logger.Warnf("%v", cferr) reader.SkipChildren() continue } fn.InlinedCalls = append(fn.InlinedCalls, InlinedCall{ cu: cu, LowPC: lowpc, HighPC: highpc, }) fl := fileLine{callfile, int(callline)} bi.inlinedCallLines[fl] = append(bi.inlinedCallLines[fl], lowpc) } reader.SkipChildren() } } func uniq(s []string) []string { if len(s) <= 0 { return s } src, dst := 1, 1 for src < len(s) { if s[src] != s[dst-1] { s[dst] = s[src] dst++ } src++ } return s[:dst] } func (bi *BinaryInfo) expandPackagesInType(expr ast.Expr) { switch e := expr.(type) { case *ast.ArrayType: bi.expandPackagesInType(e.Elt) case *ast.ChanType: bi.expandPackagesInType(e.Value) case *ast.FuncType: for i := range e.Params.List { bi.expandPackagesInType(e.Params.List[i].Type) } if e.Results != nil { for i := range e.Results.List { bi.expandPackagesInType(e.Results.List[i].Type) } } case *ast.MapType: bi.expandPackagesInType(e.Key) bi.expandPackagesInType(e.Value) case *ast.ParenExpr: bi.expandPackagesInType(e.X) case *ast.SelectorExpr: switch x := e.X.(type) { case *ast.Ident: if len(bi.PackageMap[x.Name]) > 0 { // There's no particular reason to expect the first entry to be the // correct one if the package name is ambiguous, but trying all possible // expansions of all types mentioned in the expression is complicated // and, besides type assertions, users can always specify the type they // want exactly, using a string. x.Name = bi.PackageMap[x.Name][0] } default: bi.expandPackagesInType(e.X) } case *ast.StarExpr: bi.expandPackagesInType(e.X) default: // nothing to do } } // escapePackagePath returns pkg with '.' replaced with '%2e' (in all // elements of the path except the first one) like Go does in variable and // type names. func escapePackagePath(pkg string) string { slash := strings.Index(pkg, "/") if slash < 0 { slash = 0 } return pkg[:slash] + strings.Replace(pkg[slash:], ".", "%2e", -1) } // Looks up symbol (either functions or global variables) at address addr. // Used by disassembly formatter. func (bi *BinaryInfo) symLookup(addr uint64) (string, uint64) { fn := bi.PCToFunc(addr) if fn != nil { if fn.Entry == addr { // only report the function name if it's the exact address because it's // easier to read the absolute address than function_name+offset. return fn.Name, fn.Entry } return "", 0 } if sym, ok := bi.SymNames[addr]; ok { return sym.Name, addr } i := sort.Search(len(bi.packageVars), func(i int) bool { return bi.packageVars[i].addr >= addr }) if i >= len(bi.packageVars) { return "", 0 } if bi.packageVars[i].addr > addr { // report previous variable + offset if i-th variable starts after addr i-- } if i >= 0 && bi.packageVars[i].addr != 0 { return bi.packageVars[i].name, bi.packageVars[i].addr } return "", 0 } type PackageBuildInfo struct { ImportPath string DirectoryPath string Files map[string]struct{} } // ListPackagesBuildInfo returns the list of packages used by the program along with // the directory where each package was compiled and optionally the list of // files constituting the package. func (bi *BinaryInfo) ListPackagesBuildInfo(includeFiles bool) []*PackageBuildInfo { m := make(map[string]*PackageBuildInfo) for _, cu := range bi.Images[0].compileUnits { if cu.image != bi.Images[0] || !cu.isgo || cu.lineInfo == nil { //TODO(aarzilli): what's the correct thing to do for plugins? continue } ip := strings.Replace(cu.name, "\\", "/", -1) if _, ok := m[ip]; !ok { path := cu.lineInfo.FirstFile() if ext := filepath.Ext(path); ext != ".go" && ext != ".s" { continue } dp := filepath.Dir(path) m[ip] = &PackageBuildInfo{ ImportPath: ip, DirectoryPath: dp, Files: make(map[string]struct{}), } } if includeFiles { pbi := m[ip] for _, file := range cu.lineInfo.FileNames { pbi.Files[file.Path] = struct{}{} } } } r := make([]*PackageBuildInfo, 0, len(m)) for _, pbi := range m { r = append(r, pbi) } sort.Slice(r, func(i, j int) bool { return r[i].ImportPath < r[j].ImportPath }) return r } // cuFilePath takes a compilation unit "cu" and a file index reference // "fileidx" and returns the corresponding file name entry from the // DWARF line table associated with the unit; "entry" is the offset of // the attribute where the file reference originated, for logging // purposes. Return value is the file string and an error value; error // will be non-nil if the file could not be recovered, perhaps due to // malformed DWARF. func (cu *compileUnit) filePath(fileidx int, entry *dwarf.Entry) (string, error) { if cu.lineInfo == nil { return "", fmt.Errorf("reading debug_info: file reference within a compilation unit without debug_line section at %#x", entry.Offset) } // File numbering is slightly different before and after DWARF 5; // account for this here. See section 6.2.4 of the DWARF 5 spec. if cu.Version < 5 { fileidx-- } if fileidx < 0 || fileidx >= len(cu.lineInfo.FileNames) { return "", fmt.Errorf("reading debug_info: file index (%d) out of range in compile unit file table at %#x", fileidx, entry.Offset) } return cu.lineInfo.FileNames[fileidx].Path, nil }