# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers import numpy as np from x2paddle.decoder.caffe_decoder import CaffeGraph from x2paddle.core.op_mapper import OpMapper from x2paddle.core.util import * class CaffeOpMapper(OpMapper): def __init__(self, decoder): super(CaffeOpMapper, self).__init__() self.graph = decoder.caffe_graph self.weights = dict() resolver = decoder.resolver if resolver.has_pycaffe(): self.did_use_pb = False else: self.did_use_pb = True def run(self): print("Total nodes: {}".format(len(self.graph.topo_sort))) # check if ops in model are all supported if not self.op_checker(): raise Exception("Model are not supported yet.") for node_name in self.graph.topo_sort: node = self.graph.get_node(node_name) op = node.layer_type if hasattr(self, op): func = getattr(self, op) func(node) for i in range(len(self.graph.topo_sort)): node_name = self.graph.topo_sort[i] node = self.graph.get_node(node_name) self.net_code += node.fluid_code.gen_codes() def adjust_parameters(self, node, data): if not self.did_use_pb: return data # When using the protobuf-backend, each parameter initially has four dimensions. # In certain cases (like FC layers), we want to eliminate the singleton dimensions. # This implementation takes care of the common cases. However, it does leave the # potential for future issues. # The Caffe-backend does not suffer from this problem. data = list(data) squeeze_indices = [1] # Squeeze biases. if node.kind == NodeKind.InnerProduct: squeeze_indices.append(0) # Squeeze FC. for idx in squeeze_indices: if idx >= len(data): continue d = data[idx] assert len( d.shape ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % ( str(d.shape)) shape_old = d.shape sq_axis = None if idx == 0: sq_axis = (0, 1) elif idx == 1: sq_axis = (0, 1, 2) else: continue data[idx] = np.squeeze(d, axis=sq_axis) shape_new = data[idx].shape if len(shape_old) != shape_new: debug('squeeze idx:%d, with kind:%s,name:%s' % \ (idx, node.kind, node.name)) return data @staticmethod def get_kernel_value(scalar, repeated, idx, default=None): if scalar: return scalar if repeated: if isinstance(repeated, numbers.Number): return repeated if len(repeated) == 1: # Same value applies to all spatial dimensions return int(repeated[0]) assert idx < len(repeated) # Extract the value for the given spatial dimension return repeated[idx] if default is None: raise ValueError('Unable to determine kernel parameter!') return default def get_kernel_parameters(self, kind, params): assert kind in ['Convolution', 'Pooling', 'Deconvolution'] k_h = self.get_kernel_value(params.kernel_h, params.kernel_size, 0, default=1) k_w = self.get_kernel_value(params.kernel_w, params.kernel_size, 1, default=1) s_h = self.get_kernel_value(params.stride_h, params.stride, 0, default=1) s_w = self.get_kernel_value(params.stride_w, params.stride, 1, default=1) p_h = self.get_kernel_value(params.pad_h, params.pad, 0, default=0) p_w = self.get_kernel_value(params.pad_w, params.pad, 1, default=0) dila_h = dila_w = 1 group = 1 c_o = 1 if kind in ['Convolution', 'Deconvolution']: c_o = params.num_output group = params.group dila_len = len(params.dilation) if dila_len == 2: dila_h = params.dilation[0] dila_w = params.dilation[1] elif dila_len == 1: dila_h = dila_w = params.dilation[0] else: assert dila_len == 0, "invalid length[%s] of dilation in convolution" % ( dila_len) kernel = [k_h, k_w] stride = [s_h, s_w] pad = [p_h, p_w] dilation = [dila_h, dila_w] return c_o, kernel, stride, pad, dilation, group def get_input_name(self, node): if hasattr(node, "index"): return node.layer_name + "[{}]".format(node.index) else: return node.layer_name def is_BN(self, node): return True if node.layer_type == 'BatchNorm' else False def is_Scale(self, node): return True if node.layer_type == 'Scale' else False def Input(self, node): shape = list(node.layer.input_param.shape[0].dim)[1:] dtype = 'float32' attr = { 'dtype': string(dtype), 'shape': shape, 'name': string(node.layer_name) } node.fluid_code.add_layer("data", inputs=None, output=node, param_attr=attr) def Convolution(self, node): data = node.data assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format( node.layer_name, node.layer_type) data = self.adjust_parameters(node, data) self.weights[node.layer_name + '_weights'] = data[0] if len(data) == 2: self.weights[node.layer_name + '_bias'] = data[1] params = node.layer.convolution_param channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters( node.layer_type, params) assert len(node.inputs ) == 1, 'The count of Convolution node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = { 'filter_size': kernel, 'num_filters': channel, 'stride': stride, 'padding': pad, 'dilation': dilation, 'groups': group, 'name': string(node.layer_name), 'param_attr': string(node.layer_name + '_weights'), 'bias_attr': False if len(data) == 1 else string(node.layer_name + '_bias'), } node.fluid_code.add_layer("conv2d", inputs=input, output=node, param_attr=attr) def Deconvolution(self, node): data = node.data assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format( node.layer_name, node.layer_type) data = self.adjust_parameters(node, data) self.weights[node.layer_name + '_weights'] = data[0] if len(data) == 2: self.weights[node.layer_name + '_bias'] = data[1] params = node.layer.convolution_param channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters( node.layer_type, params) assert len(node.inputs ) == 1, 'The count of Deconvolution node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = { 'output_size': None, 'filter_size': kernel, 'num_filters': channel, 'stride': stride, 'padding': pad, 'dilation': dilation, 'groups': group, 'name': string(node.layer_name), 'param_attr': string(node.layer_name + '_weights'), 'bias_attr': False if len(data) == 1 else string(node.layer_name + '_bias') } node.fluid_code.add_layer("conv2d_transpose", inputs=input, output=node, param_attr=attr) def Pooling(self, node): params = node.layer.pooling_param global_pool = getattr(params, 'global_pooling', False) kernel_default = [1, 1] channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters( node.layer_type, params) if params.pool == 0: pool_type = 'max' else: pool_type = 'avg' assert len( node.inputs) == 1, 'The count of Pooling node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = { 'pool_size': kernel, 'pool_stride': stride, 'pool_padding': pad, 'ceil_mode': True, 'pool_type': string(pool_type), 'exclusive': True, 'global_pooling': global_pool, 'name': string(node.layer_name) } node.fluid_code.add_layer("pool2d", inputs=input, output=node, param_attr=attr) def ReLU(self, node): assert len( node.inputs) == 1, 'The count of ReLU node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = {'name': string(node.layer_name)} node.fluid_code.add_layer("relu", inputs=input, output=node, param_attr=attr) def LRN(self, node): assert len(node.inputs) == 1, 'The count of LRN node\'s input is not 1.' params = node.layer.lrn_param # The window size must be an odd value. For a window # size of (2*n+1), Paddle defines depth_radius = n. assert params.local_size % 2 == 1 # Caffe scales by (alpha/(2*n+1)), whereas Paddle # just scales by alpha (as does Krizhevsky's paper). # We'll account for that here. alpha = params.alpha / float(params.local_size) input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = { 'n': params.local_size, 'k': 1.0, 'alpha': alpha, 'beta': params.beta, 'name': string(node.layer_name) } node.fluid_code.add_layer("lrn", inputs=input, output=node, param_attr=attr) def InnerProduct(self, node): data = node.data assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format( node.layer_name, node.layer_type) data = self.adjust_parameters(node, data) # Reshape the parameters to Paddle's ordering transpose_order = (1, 0) w = data[0] fc_shape = w.shape output_channels = fc_shape[0] w = w.reshape((output_channels, -1)) w = w.transpose(transpose_order) data[0] = w self.weights[node.layer_name + '_weights'] = data[0] if len(data) == 2: self.weights[node.layer_name + '_bias'] = data[1] assert len(node.inputs ) == 1, 'The count of InnerProduct node\'s input is not 1.' params = node.layer.inner_product_param assert params.axis == 1 assert params.bias_term == True input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = { 'size': params.num_output, 'name': string(node.layer_name), 'act': None, 'param_attr': string(node.layer_name + '_weights'), 'bias_attr': False if len(data) == 1 else string(node.layer_name + '_bias') } node.fluid_code.add_layer("fc", inputs=input, output=node, param_attr=attr) def Softmax(self, node): assert len( node.inputs) == 1, 'The count of Softmax node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp params = node.layer.softmax_param axis = params.axis shape = node.input_shape[0] dims = len(shape) axis = axis + dims if axis < 0 else axis need_transpose = False if axis + 1 != dims: need_transpose = True if need_transpose: in_order = list(range(dims)) in_order.remove(axis) in_order.append(axis) attr = { 'perm': in_order, 'name': string(node.layer_name + '_transpose_in') } node.fluid_code.add_layer("transpose", inputs=input, output=node, param_attr=attr) attr = {'name': string(node.layer_name + '_softmax')} node.fluid_code.add_layer("softmax", inputs=node if need_transpose else input, output=node, param_attr=attr) if need_transpose: out_order = [ 0, ] * dims for id, v in enumerate(in_order): out_order[v] = id attr = { 'perm': out_order, 'name': string(node.layer_name + '_transpose_out') } node.fluid_code.add_layer("transpose", inputs=node, output=node, param_attr=attr) def Slice(self, node): assert len( node.inputs) == 1, 'The count of Slice node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp params = node.layer.slice_param axis = params.axis points = list(params.slice_point) maxint32 = 2147483647 points = [0] + points points.append(maxint32) i = 0 node.fluid_code.add_note('{} = []'.format(node.layer_name)) for i in range(len(points)): attr = { 'axes': [axis], 'starts': [points[i]], 'ends': [points[i + 1]], 'name': string(node.layer_name + '_' + str(i)) } node.fluid_code.add_layer("slice", inputs=input, output=string(node.layer_name + '_' + str(i)), param_attr=attr) node.fluid_code.add_note('{}.append({})'.format( node.layer_name, node.layer_name + '_' + str(i))) if i == len(points) - 2: break def Concat(self, node): assert len( node.inputs ) > 1, 'The count of Concat node\'s input is not more than 1.' inputs = [] for i in range(len(node.inputs)): input = self.graph.get_bottom_node(node, idx=i, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp inputs.append(input) params = node.layer.concat_param axis = params.axis attr = {'axis': axis, 'name': string(node.layer_name)} node.fluid_code.add_layer("concat", inputs=inputs, output=node, param_attr=attr) def PReLU(self, node): assert len( node.inputs) == 1, 'The count of PReLU node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp params = node.layer.prelu_param mode_bool = params.channel_shared if mode_bool: mode = 'all' else: mode = 'channel' data = node.data assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format( node.layer_name, node.layer_type) self.weights[node.layer_name + '_weights'] = data[0] attr = { 'mode': mode, 'param_attr': string(node.layer_name + '_weights'), 'name': string(node.layer_name) } node.fluid_code.add_layer("prelu", inputs=input, output=node, param_attr=attr) def Sigmoid(self, node): assert len( node.inputs) == 1, 'The count of PReLU node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = {'name': string(node.layer_name)} node.fluid_code.add_layer("sigmoid", inputs=input, output=node, param_attr=attr) def AbsVal(self, node): assert len( node.inputs) == 1, 'The count of PReLU node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = {'name': string(node.layer_name)} node.fluid_code.add_layer("absval", inputs=input, output=node, param_attr=attr) def Accuracy(self, node): assert len( node.inputs) == 2, 'The count of Accuracy node\'s input is not 2.' inputs = [] inputs[0] = None inputs[1] = None i = 0 for shape in node.input_shape: if shape[1] == 1: input = self.graph.get_bottom_node(node, idx=i, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp inputs[1] = input else: input = self.graph.get_bottom_node(node, idx=i, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp inputs[0] = input i += 1 params = node.layer.accuracy_param top_k = params.top_k axis = params.axis ignore_label = params.ignore_label # TODO(syf) assert axis == 1, 'PaddlePaddle can not support the situation when the axis is not 1.' assert not ignore_label >= 0, 'PaddlePaddle can not support the situation when the model has ignore label.' attr = {'k': top_k} node.fluid_code.add_layer("accuracy", inputs=inputs, output=node, param_attr=attr) def TanH(self, node): assert len( node.inputs) == 1, 'The count of TanH node\'s input is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp attr = {'name': string(node.layer_name)} node.fluid_code.add_layer("tanh", inputs=input, output=node, param_attr=attr) def Eltwise(self, node): assert len( node.inputs) == 2, 'The count of TanH node\'s input is not 2.' params = node.layer.eltwise_param mode = params.operation inputs = [] input0 = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input0): tmp = self.graph.get_bottom_node(input0, idx=0, copy=True) if self.is_BN(tmp): input0 = tmp inputs.append(input0) input1 = self.graph.get_bottom_node(node, idx=1, copy=True) if self.is_Scale(input1): tmp = self.graph.get_bottom_node(input1, idx=0, copy=True) if self.is_BN(tmp): input1 = tmp inputs.append(input1) if mode == 0: inputs_dict = {} inputs_dict['x'] = inputs[0] inputs_dict['y'] = inputs[1] attr = {'act': None, 'name': string(node.layer_name)} node.fluid_code.add_layer("elementwise_mul", inputs=inputs_dict, output=node, param_attr=attr) elif mode == 1: if hasattr(params, 'coeff') and len(params.coeff) == 2: coeff = params.coeff input1_name = self.get_input_name(inputs[0]) attr = { 'shape': [1], 'value': coeff[0], 'dtype': '{}.dtype'.format(input1_name) } node.fluid_code.add_layer("fill_constant", inputs=None, output=node.layer_name + '_const1', param_attr=attr) attr = {'act': None, 'name': string(node.layer_name + '_mul1')} node.fluid_code.add_layer("elementwise_mul", inputs=input1_name + ', ' + node.layer_name + '_const1', output=node.layer_name + '_mul1', param_attr=attr) input2_name = self.get_input_name(inputs[1]) attr = { 'shape': [1], 'value': coeff[1], 'dtype': '{}.dtype'.format(input2_name) } node.fluid_code.add_layer("fill_constant", inputs=None, output=node.layer_name + '_const2', param_attr=attr) attr = {'act': None, 'name': string(node.layer_name + '_mul2')} node.fluid_code.add_layer("elementwise_mul", inputs=input2_name + ', ' + node.layer_name + '_const2', output=node.layer_name + '_mul2', param_attr=attr) attr = {'act': None, 'name': string(node.layer_name)} node.fluid_code.add_layer("elementwise_add", inputs='{}_mul1, {}_mul2'.format( node.layer_name, node.layer_name), output=node, param_attr=attr) else: inputs_dict = {} inputs_dict['x'] = inputs[0] inputs_dict['y'] = inputs[1] attr = {'act': None, 'name': string(node.layer_name)} node.fluid_code.add_layer("elementwise_add", inputs=inputs_dict, output=node, param_attr=attr) else: inputs_dict = {} inputs_dict['x'] = inputs[0] inputs_dict['y'] = inputs[1] attr = {'act': None, 'name': string(node.layer_name)} node.fluid_code.add_layer("elementwise_max", inputs=inputs_dict, output=node, param_attr=attr) def BatchNorm(self, node): assert len(node.inputs) == 1 and len( node.outputs ) == 1, 'The count of BatchNorm node\'s input and output is not 1.' input = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input): tmp = self.graph.get_bottom_node(input, idx=0, copy=True) if self.is_BN(tmp): input = tmp params = node.layer.batch_norm_param if hasattr(params, 'eps'): eps = params.eps else: eps = 1e-5 assert len(node.data) == 3 node.data = [np.squeeze(i) for i in node.data] mean, variance, scale = node.data # Prescale the stats scaling_factor = 1.0 / scale if scale != 0 else 0 mean *= scaling_factor variance *= scaling_factor self.weights[node.layer_name + '_mean'] = mean self.weights[node.layer_name + '_variance'] = variance if self.graph.get_node(node.outputs[0]).layer_type == 'Scale': data = self.graph.get_node(node.outputs[0]).data self.weights[node.layer_name + '_scale'] = np.squeeze(data[0]) self.weights[node.layer_name + '_offset'] = np.squeeze(data[1]) attr = { 'is_test': True, 'param_attr': string(node.layer_name + '_scale'), 'bias_attr': string(node.layer_name + '_offset'), 'moving_mean_name': string(node.layer_name + '_mean'), 'moving_variance_name': string(node.layer_name + '_variance'), 'epsilon': eps, 'name': string(node.layer_name) } else: attr = { 'is_test': True, 'param_attr': None, 'bias_attr': None, 'moving_mean_name': string(node.layer_name + '_mean'), 'moving_variance_name': string(node.layer_name + '_variance'), 'epsilon': eps, 'name': string(node.layer_name) } node.fluid_code.add_layer("batch_norm", inputs=input, output=node, param_attr=attr) def Scale(self, node): assert len( node.outputs) == 1, 'The count of Scale node\'s output is not 1.' if len(node.inputs) == 1 and self.graph.get_node( node.inputs[0]).layer_type == 'BatchNorm': return else: self.weights[node.layer_name + '_scale'] = np.squeeze(nose.data[0]) self.weights[node.layer_name + '_offset'] = np.squeeze(node.data[1]) params = node.layer.scale_params axis = params.axis num_axes = params.num_axes assert num_axes == 1, "layer scale not support this num_axes[%d] now" % ( num_axes) inputs = [] if len(node.inputs) == 2: # for two tensor, here resets axis to 1. Maybe there is a bug for unkown case. axis = 1 bias_shape = node.input_shape[0][axis:axis + num_axes] input0 = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input0): tmp = self.graph.get_bottom_node(input0, idx=0, copy=True) if self.is_BN(tmp): input0 = tmp input1 = self.graph.get_bottom_node(node, idx=1, copy=True) if self.is_Scale(input1): tmp = self.graph.get_bottom_node(input1, idx=0, copy=True) if self.is_BN(tmp): input1 = tmp inputs.append(input0) inputs.append(input1) attr = {'axis': axis, 'name': string(node.layer_name + '_mul')} node.fluid_code.add_layer("elementwise_mul", inputs=inputs, output=node.layer_name + '_mul', param_attr=attr) else: bias_shape = node.input_shape[0][axis:axis + num_axes] input0 = self.graph.get_bottom_node(node, idx=0, copy=True) if self.is_Scale(input0): tmp = self.graph.get_bottom_node(input0, idx=0, copy=True) if self.is_BN(tmp): input0 = tmp input0_name = self.get_input_name(input0) attr = { 'dtype': '{}.dtype'.formatr(input0_name), 'shape': bias_shape, 'name': string(node.layer_name + '_cparam1'), 'attr': string(node.layer_name + '_scale'), 'is_bias': True, 'default_initializer': 'Constant(value=1.0)' } node.fluid_code.add_layer("create_parameter", inputs=None, output=node, param_attr=attr) inputs.append(input0) inputs.append(node) attr = {'axis': axis, 'name': string(node.layer_name + '_mul')} node.fluid_code.add_layer("elementwise_mul", inputs=inputs, output=node.layer_name + '_mul', param_attr=attr) scale_shape = bias_shape input0_name = self.get_input_name(input0) attr = { 'dtype': '{}.dtype'.formatr(input0_name), 'shape': scale_shape, 'name': string(node.layer_name + '_cparam2'), 'attr': string(node.layer_name + '_offset'), 'is_bias': True, 'default_initializer': 'Constant(value=1.0)' } node.fluid_code.add_layer("create_parameter", inputs=None, output=node.layer_name + '_offset_param', param_attr=attr) attr = {'axis': axis, 'name': string(node.layer_name + '_add')} node.fluid_code.add_layer("elementwise_add", inputs='{}_mul, {}_offset_param'.format( node.layer_name, node.layer_name), output=node, param_attr=attr)