#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ProfileEvents { extern const Event StorageBufferFlush; extern const Event StorageBufferErrorOnFlush; extern const Event StorageBufferPassedAllMinThresholds; extern const Event StorageBufferPassedTimeMaxThreshold; extern const Event StorageBufferPassedRowsMaxThreshold; extern const Event StorageBufferPassedBytesMaxThreshold; } namespace CurrentMetrics { extern const Metric StorageBufferRows; extern const Metric StorageBufferBytes; } namespace DB { namespace ErrorCodes { extern const int BAD_ARGUMENTS; extern const int NOT_IMPLEMENTED; extern const int LOGICAL_ERROR; extern const int INFINITE_LOOP; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; } StorageBuffer::StorageBuffer( const StorageID & table_id_, const ColumnsDescription & columns_, const ConstraintsDescription & constraints_, const Context & context_, size_t num_shards_, const Thresholds & min_thresholds_, const Thresholds & max_thresholds_, const StorageID & destination_id_, bool allow_materialized_) : IStorage(table_id_) , global_context(context_.getGlobalContext()) , num_shards(num_shards_), buffers(num_shards_) , min_thresholds(min_thresholds_) , max_thresholds(max_thresholds_) , destination_id(destination_id_) , allow_materialized(allow_materialized_) , log(&Poco::Logger::get("StorageBuffer (" + table_id_.getFullTableName() + ")")) , bg_pool(global_context.getBufferFlushSchedulePool()) { StorageInMemoryMetadata storage_metadata; storage_metadata.setColumns(columns_); storage_metadata.setConstraints(constraints_); setInMemoryMetadata(storage_metadata); } /// Reads from one buffer (from one block) under its mutex. class BufferSource : public SourceWithProgress { public: BufferSource(const Names & column_names_, StorageBuffer::Buffer & buffer_, const StorageBuffer & storage, const StorageMetadataPtr & metadata_snapshot) : SourceWithProgress( metadata_snapshot->getSampleBlockForColumns(column_names_, storage.getVirtuals(), storage.getStorageID())) , column_names(column_names_.begin(), column_names_.end()) , buffer(buffer_) {} String getName() const override { return "Buffer"; } protected: Chunk generate() override { Chunk res; if (has_been_read) return res; has_been_read = true; std::lock_guard lock(buffer.mutex); if (!buffer.data.rows()) return res; Columns columns; columns.reserve(column_names.size()); for (const auto & name : column_names) columns.push_back(buffer.data.getByName(name).column); UInt64 size = columns.at(0)->size(); res.setColumns(std::move(columns), size); return res; } private: Names column_names; StorageBuffer::Buffer & buffer; bool has_been_read = false; }; QueryProcessingStage::Enum StorageBuffer::getQueryProcessingStage(const Context & context, QueryProcessingStage::Enum to_stage, SelectQueryInfo & query_info) const { if (destination_id) { auto destination = DatabaseCatalog::instance().getTable(destination_id, context); if (destination.get() == this) throw Exception("Destination table is myself. Read will cause infinite loop.", ErrorCodes::INFINITE_LOOP); return destination->getQueryProcessingStage(context, to_stage, query_info); } return QueryProcessingStage::FetchColumns; } Pipe StorageBuffer::read( const Names & column_names, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info, const Context & context, QueryProcessingStage::Enum processed_stage, const size_t max_block_size, const unsigned num_streams) { QueryPlan plan; read(plan, column_names, metadata_snapshot, query_info, context, processed_stage, max_block_size, num_streams); return plan.convertToPipe(); } void StorageBuffer::read( QueryPlan & query_plan, const Names & column_names, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info, const Context & context, QueryProcessingStage::Enum processed_stage, size_t max_block_size, unsigned num_streams) { if (destination_id) { auto destination = DatabaseCatalog::instance().getTable(destination_id, context); if (destination.get() == this) throw Exception("Destination table is myself. Read will cause infinite loop.", ErrorCodes::INFINITE_LOOP); auto destination_lock = destination->lockForShare(context.getCurrentQueryId(), context.getSettingsRef().lock_acquire_timeout); auto destination_metadata_snapshot = destination->getInMemoryMetadataPtr(); const bool dst_has_same_structure = std::all_of(column_names.begin(), column_names.end(), [metadata_snapshot, destination_metadata_snapshot](const String& column_name) { const auto & dest_columns = destination_metadata_snapshot->getColumns(); const auto & our_columns = metadata_snapshot->getColumns(); return dest_columns.hasPhysical(column_name) && dest_columns.get(column_name).type->equals(*our_columns.get(column_name).type); }); if (dst_has_same_structure) { if (query_info.order_optimizer) query_info.input_order_info = query_info.order_optimizer->getInputOrder(destination_metadata_snapshot); /// The destination table has the same structure of the requested columns and we can simply read blocks from there. destination->read( query_plan, column_names, destination_metadata_snapshot, query_info, context, processed_stage, max_block_size, num_streams); } else { /// There is a struct mismatch and we need to convert read blocks from the destination table. const Block header = metadata_snapshot->getSampleBlock(); Names columns_intersection = column_names; Block header_after_adding_defaults = header; const auto & dest_columns = destination_metadata_snapshot->getColumns(); const auto & our_columns = metadata_snapshot->getColumns(); for (const String & column_name : column_names) { if (!dest_columns.hasPhysical(column_name)) { LOG_WARNING(log, "Destination table {} doesn't have column {}. The default values are used.", destination_id.getNameForLogs(), backQuoteIfNeed(column_name)); boost::range::remove_erase(columns_intersection, column_name); continue; } const auto & dst_col = dest_columns.getPhysical(column_name); const auto & col = our_columns.getPhysical(column_name); if (!dst_col.type->equals(*col.type)) { LOG_WARNING(log, "Destination table {} has different type of column {} ({} != {}). Data from destination table are converted.", destination_id.getNameForLogs(), backQuoteIfNeed(column_name), dst_col.type->getName(), col.type->getName()); header_after_adding_defaults.getByName(column_name) = ColumnWithTypeAndName(dst_col.type, column_name); } } if (columns_intersection.empty()) { LOG_WARNING(log, "Destination table {} has no common columns with block in buffer. Block of data is skipped.", destination_id.getNameForLogs()); } else { destination->read( query_plan, columns_intersection, destination_metadata_snapshot, query_info, context, processed_stage, max_block_size, num_streams); if (query_plan.isInitialized()) { auto adding_missed = std::make_unique( query_plan.getCurrentDataStream(), header_after_adding_defaults, metadata_snapshot->getColumns(), context); adding_missed->setStepDescription("Add columns missing in destination table"); query_plan.addStep(std::move(adding_missed)); auto actions_dag = ActionsDAG::makeConvertingActions( query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(), header.getColumnsWithTypeAndName(), ActionsDAG::MatchColumnsMode::Name); auto converting = std::make_unique(query_plan.getCurrentDataStream(), actions_dag); converting->setStepDescription("Convert destination table columns to Buffer table structure"); query_plan.addStep(std::move(converting)); } } } if (query_plan.isInitialized()) { StreamLocalLimits limits; SizeLimits leaf_limits; /// Add table lock for destination table. auto adding_limits_and_quota = std::make_unique( query_plan.getCurrentDataStream(), destination, std::move(destination_lock), limits, leaf_limits, nullptr, nullptr); adding_limits_and_quota->setStepDescription("Lock destination table for Buffer"); query_plan.addStep(std::move(adding_limits_and_quota)); } } Pipe pipe_from_buffers; { Pipes pipes_from_buffers; pipes_from_buffers.reserve(num_shards); for (auto & buf : buffers) pipes_from_buffers.emplace_back(std::make_shared(column_names, buf, *this, metadata_snapshot)); pipe_from_buffers = Pipe::unitePipes(std::move(pipes_from_buffers)); } if (pipe_from_buffers.empty()) return; QueryPlan buffers_plan; /** If the sources from the table were processed before some non-initial stage of query execution, * then sources from the buffers must also be wrapped in the processing pipeline before the same stage. */ if (processed_stage > QueryProcessingStage::FetchColumns) { auto interpreter = InterpreterSelectQuery( query_info.query, context, std::move(pipe_from_buffers), SelectQueryOptions(processed_stage)); interpreter.buildQueryPlan(buffers_plan); } else { if (query_info.prewhere_info) { pipe_from_buffers.addSimpleTransform([&](const Block & header) { return std::make_shared( header, query_info.prewhere_info->prewhere_actions, query_info.prewhere_info->prewhere_column_name, query_info.prewhere_info->remove_prewhere_column); }); if (query_info.prewhere_info->alias_actions) { pipe_from_buffers.addSimpleTransform([&](const Block & header) { return std::make_shared(header, query_info.prewhere_info->alias_actions); }); } } auto read_from_buffers = std::make_unique(std::move(pipe_from_buffers)); read_from_buffers->setStepDescription("Read from buffers of Buffer table"); buffers_plan.addStep(std::move(read_from_buffers)); } if (!query_plan.isInitialized()) { query_plan = std::move(buffers_plan); return; } auto result_header = buffers_plan.getCurrentDataStream().header; /// Convert structure from table to structure from buffer. if (!blocksHaveEqualStructure(query_plan.getCurrentDataStream().header, result_header)) { auto convert_actions_dag = ActionsDAG::makeConvertingActions( query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(), result_header.getColumnsWithTypeAndName(), ActionsDAG::MatchColumnsMode::Name); auto converting = std::make_unique(query_plan.getCurrentDataStream(), convert_actions_dag); query_plan.addStep(std::move(converting)); } DataStreams input_streams; input_streams.emplace_back(query_plan.getCurrentDataStream()); input_streams.emplace_back(buffers_plan.getCurrentDataStream()); std::vector> plans; plans.emplace_back(std::make_unique(std::move(query_plan))); plans.emplace_back(std::make_unique(std::move(buffers_plan))); query_plan = QueryPlan(); auto union_step = std::make_unique(std::move(input_streams), result_header); union_step->setStepDescription("Unite sources from Buffer table"); query_plan.unitePlans(std::move(union_step), std::move(plans)); } static void appendBlock(const Block & from, Block & to) { if (!to) throw Exception("Cannot append to empty block", ErrorCodes::LOGICAL_ERROR); assertBlocksHaveEqualStructure(from, to, "Buffer"); from.checkNumberOfRows(); to.checkNumberOfRows(); size_t rows = from.rows(); size_t bytes = from.bytes(); CurrentMetrics::add(CurrentMetrics::StorageBufferRows, rows); CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, bytes); size_t old_rows = to.rows(); MemoryTracker::BlockerInThread temporarily_disable_memory_tracker; try { for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no) { const IColumn & col_from = *from.getByPosition(column_no).column.get(); MutableColumnPtr col_to = IColumn::mutate(std::move(to.getByPosition(column_no).column)); col_to->insertRangeFrom(col_from, 0, rows); to.getByPosition(column_no).column = std::move(col_to); } } catch (...) { /// Rollback changes. try { for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no) { ColumnPtr & col_to = to.getByPosition(column_no).column; if (col_to->size() != old_rows) col_to = col_to->cut(0, old_rows); } } catch (...) { /// In case when we cannot rollback, do not leave incorrect state in memory. std::terminate(); } throw; } } class BufferBlockOutputStream : public IBlockOutputStream { public: explicit BufferBlockOutputStream( StorageBuffer & storage_, const StorageMetadataPtr & metadata_snapshot_) : storage(storage_) , metadata_snapshot(metadata_snapshot_) {} Block getHeader() const override { return metadata_snapshot->getSampleBlock(); } void write(const Block & block) override { if (!block) return; // Check table structure. metadata_snapshot->check(block, true); size_t rows = block.rows(); if (!rows) return; StoragePtr destination; if (storage.destination_id) { destination = DatabaseCatalog::instance().tryGetTable(storage.destination_id, storage.global_context); if (destination.get() == &storage) throw Exception("Destination table is myself. Write will cause infinite loop.", ErrorCodes::INFINITE_LOOP); } size_t bytes = block.bytes(); storage.writes.rows += rows; storage.writes.bytes += bytes; /// If the block already exceeds the maximum limit, then we skip the buffer. if (rows > storage.max_thresholds.rows || bytes > storage.max_thresholds.bytes) { if (storage.destination_id) { LOG_TRACE(storage.log, "Writing block with {} rows, {} bytes directly.", rows, bytes); storage.writeBlockToDestination(block, destination); } return; } /// We distribute the load on the shards by the stream number. const auto start_shard_num = getThreadId() % storage.num_shards; /// We loop through the buffers, trying to lock mutex. No more than one lap. auto shard_num = start_shard_num; StorageBuffer::Buffer * least_busy_buffer = nullptr; std::unique_lock least_busy_lock; size_t least_busy_shard_rows = 0; for (size_t try_no = 0; try_no < storage.num_shards; ++try_no) { std::unique_lock lock(storage.buffers[shard_num].mutex, std::try_to_lock); if (lock.owns_lock()) { size_t num_rows = storage.buffers[shard_num].data.rows(); if (!least_busy_buffer || num_rows < least_busy_shard_rows) { least_busy_buffer = &storage.buffers[shard_num]; least_busy_lock = std::move(lock); least_busy_shard_rows = num_rows; } } shard_num = (shard_num + 1) % storage.num_shards; } /// If you still can not lock anything at once, then we'll wait on mutex. if (!least_busy_buffer) { least_busy_buffer = &storage.buffers[start_shard_num]; least_busy_lock = std::unique_lock(least_busy_buffer->mutex); } insertIntoBuffer(block, *least_busy_buffer); least_busy_lock.unlock(); storage.reschedule(); } private: StorageBuffer & storage; StorageMetadataPtr metadata_snapshot; void insertIntoBuffer(const Block & block, StorageBuffer::Buffer & buffer) { time_t current_time = time(nullptr); /// Sort the columns in the block. This is necessary to make it easier to concatenate the blocks later. Block sorted_block = block.sortColumns(); if (!buffer.data) { buffer.data = sorted_block.cloneEmpty(); } else if (storage.checkThresholds(buffer, current_time, sorted_block.rows(), sorted_block.bytes())) { /** If, after inserting the buffer, the constraints are exceeded, then we will reset the buffer. * This also protects against unlimited consumption of RAM, since if it is impossible to write to the table, * an exception will be thrown, and new data will not be added to the buffer. */ storage.flushBuffer(buffer, false /* check_thresholds */, true /* locked */); } if (!buffer.first_write_time) buffer.first_write_time = current_time; appendBlock(sorted_block, buffer.data); } }; BlockOutputStreamPtr StorageBuffer::write(const ASTPtr & /*query*/, const StorageMetadataPtr & metadata_snapshot, const Context & /*context*/) { return std::make_shared(*this, metadata_snapshot); } bool StorageBuffer::mayBenefitFromIndexForIn( const ASTPtr & left_in_operand, const Context & query_context, const StorageMetadataPtr & /*metadata_snapshot*/) const { if (!destination_id) return false; auto destination = DatabaseCatalog::instance().getTable(destination_id, query_context); if (destination.get() == this) throw Exception("Destination table is myself. Read will cause infinite loop.", ErrorCodes::INFINITE_LOOP); return destination->mayBenefitFromIndexForIn(left_in_operand, query_context, destination->getInMemoryMetadataPtr()); } void StorageBuffer::startup() { if (global_context.getSettingsRef().readonly) { LOG_WARNING(log, "Storage {} is run with readonly settings, it will not be able to insert data. Set appropriate system_profile to fix this.", getName()); } flush_handle = bg_pool.createTask(log->name() + "/Bg", [this]{ flushBack(); }); flush_handle->activateAndSchedule(); } void StorageBuffer::shutdown() { if (!flush_handle) return; flush_handle->deactivate(); try { optimize(nullptr /*query*/, getInMemoryMetadataPtr(), {} /*partition*/, false /*final*/, false /*deduplicate*/, global_context); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } } /** NOTE If you do OPTIMIZE after insertion, * it does not guarantee, that all data will be in destination table at the time of next SELECT just after OPTIMIZE. * * Because in case if there was already running flushBuffer method, * then call to flushBuffer inside OPTIMIZE will see empty buffer and return quickly, * but at the same time, the already running flushBuffer method possibly is not finished, * so next SELECT will observe missing data. * * This kind of race condition make very hard to implement proper tests. */ bool StorageBuffer::optimize( const ASTPtr & /*query*/, const StorageMetadataPtr & /*metadata_snapshot*/, const ASTPtr & partition, bool final, bool deduplicate, const Context & /*context*/) { if (partition) throw Exception("Partition cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); if (final) throw Exception("FINAL cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); if (deduplicate) throw Exception("DEDUPLICATE cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); flushAllBuffers(false, true); return true; } bool StorageBuffer::checkThresholds(const Buffer & buffer, time_t current_time, size_t additional_rows, size_t additional_bytes) const { time_t time_passed = 0; if (buffer.first_write_time) time_passed = current_time - buffer.first_write_time; size_t rows = buffer.data.rows() + additional_rows; size_t bytes = buffer.data.bytes() + additional_bytes; return checkThresholdsImpl(rows, bytes, time_passed); } bool StorageBuffer::checkThresholdsImpl(size_t rows, size_t bytes, time_t time_passed) const { if (time_passed > min_thresholds.time && rows > min_thresholds.rows && bytes > min_thresholds.bytes) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedAllMinThresholds); return true; } if (time_passed > max_thresholds.time) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedTimeMaxThreshold); return true; } if (rows > max_thresholds.rows) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedRowsMaxThreshold); return true; } if (bytes > max_thresholds.bytes) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedBytesMaxThreshold); return true; } return false; } void StorageBuffer::flushAllBuffers(bool check_thresholds, bool reset_blocks_structure) { for (auto & buf : buffers) flushBuffer(buf, check_thresholds, false, reset_blocks_structure); } void StorageBuffer::flushBuffer(Buffer & buffer, bool check_thresholds, bool locked, bool reset_block_structure) { Block block_to_write; time_t current_time = time(nullptr); size_t rows = 0; size_t bytes = 0; time_t time_passed = 0; std::unique_lock lock(buffer.mutex, std::defer_lock); if (!locked) lock.lock(); block_to_write = buffer.data.cloneEmpty(); rows = buffer.data.rows(); bytes = buffer.data.bytes(); if (buffer.first_write_time) time_passed = current_time - buffer.first_write_time; if (check_thresholds) { if (!checkThresholdsImpl(rows, bytes, time_passed)) return; } else { if (rows == 0) return; } buffer.data.swap(block_to_write); buffer.first_write_time = 0; CurrentMetrics::sub(CurrentMetrics::StorageBufferRows, block_to_write.rows()); CurrentMetrics::sub(CurrentMetrics::StorageBufferBytes, block_to_write.bytes()); ProfileEvents::increment(ProfileEvents::StorageBufferFlush); LOG_TRACE(log, "Flushing buffer with {} rows, {} bytes, age {} seconds {}.", rows, bytes, time_passed, (check_thresholds ? "(bg)" : "(direct)")); if (!destination_id) return; /** For simplicity, buffer is locked during write. * We could unlock buffer temporary, but it would lead to too many difficulties: * - data, that is written, will not be visible for SELECTs; * - new data could be appended to buffer, and in case of exception, we must merge it with old data, that has not been written; * - this could lead to infinite memory growth. */ try { writeBlockToDestination(block_to_write, DatabaseCatalog::instance().tryGetTable(destination_id, global_context)); if (reset_block_structure) buffer.data.clear(); } catch (...) { ProfileEvents::increment(ProfileEvents::StorageBufferErrorOnFlush); /// Return the block to its place in the buffer. CurrentMetrics::add(CurrentMetrics::StorageBufferRows, block_to_write.rows()); CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, block_to_write.bytes()); buffer.data.swap(block_to_write); if (!buffer.first_write_time) buffer.first_write_time = current_time; /// After a while, the next write attempt will happen. throw; } } void StorageBuffer::writeBlockToDestination(const Block & block, StoragePtr table) { if (!destination_id || !block) return; if (!table) { LOG_ERROR(log, "Destination table {} doesn't exist. Block of data is discarded.", destination_id.getNameForLogs()); return; } auto destination_metadata_snapshot = table->getInMemoryMetadataPtr(); MemoryTracker::BlockerInThread temporarily_disable_memory_tracker; auto insert = std::make_shared(); insert->table_id = destination_id; /** We will insert columns that are the intersection set of columns of the buffer table and the subordinate table. * This will support some of the cases (but not all) when the table structure does not match. */ Block structure_of_destination_table = allow_materialized ? destination_metadata_snapshot->getSampleBlock() : destination_metadata_snapshot->getSampleBlockNonMaterialized(); Block block_to_write; for (size_t i : ext::range(0, structure_of_destination_table.columns())) { auto dst_col = structure_of_destination_table.getByPosition(i); if (block.has(dst_col.name)) { auto column = block.getByName(dst_col.name); if (!column.type->equals(*dst_col.type)) { LOG_WARNING(log, "Destination table {} have different type of column {} ({} != {}). Block of data is converted.", destination_id.getNameForLogs(), backQuoteIfNeed(column.name), dst_col.type->getName(), column.type->getName()); column.column = castColumn(column, dst_col.type); column.type = dst_col.type; } block_to_write.insert(column); } } if (block_to_write.columns() == 0) { LOG_ERROR(log, "Destination table {} have no common columns with block in buffer. Block of data is discarded.", destination_id.getNameForLogs()); return; } if (block_to_write.columns() != block.columns()) LOG_WARNING(log, "Not all columns from block in buffer exist in destination table {}. Some columns are discarded.", destination_id.getNameForLogs()); auto list_of_columns = std::make_shared(); insert->columns = list_of_columns; list_of_columns->children.reserve(block_to_write.columns()); for (const auto & column : block_to_write) list_of_columns->children.push_back(std::make_shared(column.name)); auto insert_context = Context(global_context); insert_context.makeQueryContext(); InterpreterInsertQuery interpreter{insert, insert_context, allow_materialized}; auto block_io = interpreter.execute(); block_io.out->writePrefix(); block_io.out->write(block_to_write); block_io.out->writeSuffix(); } void StorageBuffer::flushBack() { try { flushAllBuffers(true); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } reschedule(); } void StorageBuffer::reschedule() { time_t min_first_write_time = std::numeric_limits::max(); time_t rows = 0; for (auto & buffer : buffers) { std::lock_guard lock(buffer.mutex); min_first_write_time = buffer.first_write_time; rows += buffer.data.rows(); } /// will be rescheduled via INSERT if (!rows) return; time_t current_time = time(nullptr); time_t time_passed = current_time - min_first_write_time; size_t min = std::max(min_thresholds.time - time_passed, 1); size_t max = std::max(max_thresholds.time - time_passed, 1); flush_handle->scheduleAfter(std::min(min, max) * 1000); } void StorageBuffer::checkAlterIsPossible(const AlterCommands & commands, const Settings & /* settings */) const { for (const auto & command : commands) { if (command.type != AlterCommand::Type::ADD_COLUMN && command.type != AlterCommand::Type::MODIFY_COLUMN && command.type != AlterCommand::Type::DROP_COLUMN && command.type != AlterCommand::Type::COMMENT_COLUMN) throw Exception( "Alter of type '" + alterTypeToString(command.type) + "' is not supported by storage " + getName(), ErrorCodes::NOT_IMPLEMENTED); } } std::optional StorageBuffer::totalRows(const Settings & settings) const { std::optional underlying_rows; auto underlying = DatabaseCatalog::instance().tryGetTable(destination_id, global_context); if (underlying) underlying_rows = underlying->totalRows(settings); if (!underlying_rows) return underlying_rows; UInt64 rows = 0; for (const auto & buffer : buffers) { std::lock_guard lock(buffer.mutex); rows += buffer.data.rows(); } return rows + *underlying_rows; } std::optional StorageBuffer::totalBytes(const Settings & /*settings*/) const { UInt64 bytes = 0; for (const auto & buffer : buffers) { std::lock_guard lock(buffer.mutex); bytes += buffer.data.allocatedBytes(); } return bytes; } void StorageBuffer::alter(const AlterCommands & params, const Context & context, TableLockHolder &) { auto table_id = getStorageID(); checkAlterIsPossible(params, context.getSettingsRef()); auto metadata_snapshot = getInMemoryMetadataPtr(); /// Flush all buffers to storages, so that no non-empty blocks of the old /// structure remain. Structure of empty blocks will be updated during first /// insert. optimize({} /*query*/, metadata_snapshot, {} /*partition_id*/, false /*final*/, false /*deduplicate*/, context); StorageInMemoryMetadata new_metadata = *metadata_snapshot; params.apply(new_metadata, context); DatabaseCatalog::instance().getDatabase(table_id.database_name)->alterTable(context, table_id, new_metadata); setInMemoryMetadata(new_metadata); } void registerStorageBuffer(StorageFactory & factory) { /** Buffer(db, table, num_buckets, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes) * * db, table - in which table to put data from buffer. * num_buckets - level of parallelism. * min_time, max_time, min_rows, max_rows, min_bytes, max_bytes - conditions for flushing the buffer. */ factory.registerStorage("Buffer", [](const StorageFactory::Arguments & args) { ASTs & engine_args = args.engine_args; if (engine_args.size() != 9) throw Exception("Storage Buffer requires 9 parameters: " " destination_database, destination_table, num_buckets, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); // Table and database name arguments accept expressions, evaluate them. engine_args[0] = evaluateConstantExpressionForDatabaseName(engine_args[0], args.local_context); engine_args[1] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[1], args.local_context); // After we evaluated all expressions, check that all arguments are // literals. for (size_t i = 0; i < 9; i++) { if (!typeid_cast(engine_args[i].get())) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Storage Buffer expects a literal as an argument #{}, got '{}'" " instead", i, engine_args[i]->formatForErrorMessage()); } } String destination_database = engine_args[0]->as().value.safeGet(); String destination_table = engine_args[1]->as().value.safeGet(); UInt64 num_buckets = applyVisitor(FieldVisitorConvertToNumber(), engine_args[2]->as().value); Int64 min_time = applyVisitor(FieldVisitorConvertToNumber(), engine_args[3]->as().value); Int64 max_time = applyVisitor(FieldVisitorConvertToNumber(), engine_args[4]->as().value); UInt64 min_rows = applyVisitor(FieldVisitorConvertToNumber(), engine_args[5]->as().value); UInt64 max_rows = applyVisitor(FieldVisitorConvertToNumber(), engine_args[6]->as().value); UInt64 min_bytes = applyVisitor(FieldVisitorConvertToNumber(), engine_args[7]->as().value); UInt64 max_bytes = applyVisitor(FieldVisitorConvertToNumber(), engine_args[8]->as().value); /// If destination_id is not set, do not write data from the buffer, but simply empty the buffer. StorageID destination_id = StorageID::createEmpty(); if (!destination_table.empty()) { destination_id.database_name = args.context.resolveDatabase(destination_database); destination_id.table_name = destination_table; } return StorageBuffer::create( args.table_id, args.columns, args.constraints, args.context, num_buckets, StorageBuffer::Thresholds{min_time, min_rows, min_bytes}, StorageBuffer::Thresholds{max_time, max_rows, max_bytes}, destination_id, static_cast(args.local_context.getSettingsRef().insert_allow_materialized_columns)); }); } }