未验证 提交 78cc1ca6 编写于 作者: T Tao Luo 提交者: GitHub

Split some APIs from nn.py to rnn.py and sequence_lod.py (#21030)

* split some APIs from nn.py to rnn.py

* split some APIs from nn.py to sequence_lod.py

test=develop

* fix unit-test bug

test=develop

* fix test_layers unit-test bug

test=develop
上级 77c20835
......@@ -35,6 +35,7 @@ from .metric_op import *
from .learning_rate_scheduler import *
from .collective import *
from .distributions import *
from .sequence_lod import *
from . import rnn
__all__ = []
......@@ -48,6 +49,7 @@ __all__ += detection.__all__
__all__ += metric_op.__all__
__all__ += learning_rate_scheduler.__all__
__all__ += distributions.__all__
__all__ += sequence_lod.__all__
__all__ += rnn.__all__
from .rnn import *
......@@ -40,10 +40,6 @@ __all__ = [
'fc',
'center_loss',
'embedding',
'dynamic_lstm',
'dynamic_lstmp',
'dynamic_gru',
'gru_unit',
'linear_chain_crf',
'crf_decoding',
'cos_sim',
......@@ -51,11 +47,8 @@ __all__ = [
'bpr_loss',
'square_error_cost',
'chunk_eval',
'sequence_conv',
'conv2d',
'conv3d',
'sequence_pool',
'sequence_softmax',
'softmax',
'pool2d',
'pool3d',
......@@ -64,14 +57,8 @@ __all__ = [
'batch_norm',
'instance_norm',
'data_norm',
'beam_search_decode',
'conv2d_transpose',
'conv3d_transpose',
'sequence_expand',
'sequence_expand_as',
'sequence_pad',
'sequence_unpad',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
......@@ -79,9 +66,6 @@ __all__ = [
'reduce_prod',
'reduce_all',
'reduce_any',
'sequence_first_step',
'sequence_last_step',
'sequence_slice',
'dropout',
'split',
'ctc_greedy_decoder',
......@@ -90,13 +74,11 @@ __all__ = [
'matmul',
'topk',
'warpctc',
'sequence_reshape',
'transpose',
'im2sequence',
'nce',
'sampled_softmax_with_cross_entropy',
'hsigmoid',
'beam_search',
'row_conv',
'multiplex',
'layer_norm',
......@@ -128,7 +110,6 @@ __all__ = [
'scatter',
'scatter_nd_add',
'scatter_nd',
'sequence_scatter',
'random_crop',
'mean_iou',
'relu',
......@@ -149,16 +130,13 @@ __all__ = [
'leaky_relu',
'soft_relu',
'flatten',
'sequence_mask',
'stack',
'pad2d',
'unstack',
'sequence_enumerate',
'unique',
'unique_with_counts',
'expand',
'expand_as',
'sequence_concat',
'scale',
'elementwise_add',
'elementwise_div',
......@@ -191,7 +169,6 @@ __all__ = [
'maxout',
'space_to_depth',
'affine_grid',
'sequence_reverse',
'affine_channel',
'similarity_focus',
'hash',
......@@ -201,7 +178,6 @@ __all__ = [
'bilinear_tensor_product',
'merge_selected_rows',
'get_tensor_from_selected_rows',
'lstm',
'shuffle_channel',
'temporal_shift',
'py_func',
......@@ -688,844 +664,6 @@ def _pull_box_sparse(input, size, dtype='float32'):
return outs
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
name=None):
"""
**Note**:
1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` .
2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.
The implementation of this OP include diagonal/peephole connections.
Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you do not need peephole connections, please set use_peepholes to False .
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
.. math::
\widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot tanh(c_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
size (int): must be 4 * hidden_size.
h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None.
c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None.
param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.
- Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size].
bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
Please refer to ref:`api_fluid_ParamAttr' . Default: None.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is [1, 4*hidden_size].
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is [1, 7*hidden_size].
use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True.
is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False.
gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid".
cell_activation (str, optional): The activation for cell output. Default: "tanh".
candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh".
dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32".
name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
Returns:
tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :
The hidden state and cell state of LSTM
- hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
- cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
emb_dim = 256
vocab_size = 10000
hidden_dim = 512
data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1)
emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
bias_attr=False)
forward, cell = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
forward.shape # (-1, 512)
cell.shape # (-1, 512)
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
hidden = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
helper.append_op(
type='lstm',
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation
})
return hidden, cell
def lstm(input,
init_h,
init_c,
max_len,
hidden_size,
num_layers,
dropout_prob=0.0,
is_bidirec=False,
is_test=False,
name=None,
default_initializer=None,
seed=-1):
"""
**Note**:
This OP only supports running on GPU devices.
This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) <http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf>`_ .
The implementation of this OP does not include diagonal/peephole connections.
Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` .
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
.. math::
\widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot tanh(c_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len.
hidden_size (int): hidden size of the LSTM.
num_layers (int): total layers number of the LSTM.
dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
There is NO dropout work on rnn output of the last RNN layers.
Default: 0.0.
is_bidirec (bool, optional): If it is bidirectional. Default: False.
is_test (bool, optional): If it is in test phrase. Default: False.
name (str, optional): A name for this layer. If set None, the layer
will be named automatically. Default: None.
default_initializer(Initializer, optional): Where use initializer to initialize the Weight
If set None, defaule initializer will be used. Default: None.
seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1.
Returns:
tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) :
Three tensors, rnn_out, last_h, last_c:
- rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]`
- last_h is the hidden state of the last step of LSTM \
shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
- last_c(Tensor): the cell state of the last step of LSTM \
shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
emb_dim = 256
vocab_size = 10000
data = fluid.data(name='x', shape=[None, 100], dtype='int64')
emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
batch_size = 20
max_len = 100
dropout_prob = 0.2
input_size = 100
hidden_size = 150
num_layers = 1
init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
max_len, hidden_size, num_layers, \
dropout_prob=dropout_prob)
rnn_out.shape # (-1, 100, 150)
last_h.shape # (1, 20, 150)
last_c.shape # (1, 20, 150)
"""
helper = LayerHelper('cudnn_lstm', **locals())
dtype = input.dtype
input_shape = list(input.shape)
input_size = input_shape[-1]
weight_size = 0
for i in range(num_layers):
if i == 0:
input_weight_size = (input_size * hidden_size) * 4
else:
if is_bidirec:
input_weight_size = (hidden_size * 2 * hidden_size) * 4
else:
input_weight_size = (hidden_size * hidden_size) * 4
hidden_weight_size = (hidden_size * hidden_size) * 4
if is_bidirec:
weight_size += (input_weight_size + hidden_weight_size) * 2
weight_size += hidden_size * 8 * 2
else:
weight_size += input_weight_size + hidden_weight_size
weight_size += hidden_size * 8
weight = helper.create_parameter(
attr=helper.param_attr,
shape=[weight_size],
dtype=dtype,
default_initializer=default_initializer)
out = helper.create_variable_for_type_inference(dtype)
last_h = helper.create_variable_for_type_inference(dtype)
last_c = helper.create_variable_for_type_inference(dtype)
cache = helper.create_variable(
persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)
helper.append_op(
type='cudnn_lstm',
inputs={
'Input': input,
'InitH': init_h,
'InitC': init_c,
'W': weight,
'Cache': cache,
},
outputs={
'Out': out,
'last_h': last_h,
'last_c': last_c,
},
attrs={
'max_len': max_len,
'is_bidirec': is_bidirec,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'is_test': is_test,
'dropout_prob': dropout_prob,
'seed': seed,
})
return out, last_h, last_c
def dynamic_lstmp(input,
size,
proj_size,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
proj_activation='tanh',
dtype='float32',
name=None,
h_0=None,
c_0=None,
cell_clip=None,
proj_clip=None):
"""
**Note**:
1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.
This OP implements the LSTMP (LSTM Projected) layer.
The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) <https://ai.google/research/pubs/pub43905.pdf>`_ .
Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer,
which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` .
This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large.
The default implementation of the OP contains diagonal/peephole connections,
please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you need to disable the peephole connections, set use_peepholes to False.
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o)
.. math::
\widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot act_h(c_t)
.. math::
r_t = \overline{act_h}(W_{rh}h_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}`
- :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports
variable-time length input sequence.
It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
size(int): must be 4 * hidden_size.
proj_size(int): The size of projection output.
param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.
- Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size.
- Projection weight = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P].
bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
Please refer to ref:`api_fluid_ParamAttr' . Default: None.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is [1, 4*hidden_size].
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is [1, 7*hidden_size].
use_peepholes (bool, optional): Whether to use peephole connection or not. Default True.
is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False.
gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid".
cell_activation (str, optional): The activation for cell output. Default "tanh".
candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh".
proj_activation(str, optional): The activation for projection output. Default "tanh".
dtype (str, optional): Data type, can be "float32" or "float64". Default "float32".
name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero.
This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None.
c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero.
This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size.
`h_0` and `c_0` can be None but only at the same time. Default: None.
cell_clip(float, optional): If not None, the cell state is clipped
by this value prior to the cell output activation. Default: None.
proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`. Default: None.
Returns:
tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :
The hidden state and cell state of LSTMP
- hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input.
- cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1)
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4,
proj_size=proj_dim,
use_peepholes=False,
is_reverse=True,
cell_activation="tanh",
proj_activation="tanh")
proj_out.shape # (-1, 256)
last_c.shape # (-1, 512)
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
proj_weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
projection = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
ordered_proj0 = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {
'Input': input,
'Weight': weight,
'ProjWeight': proj_weight,
'Bias': bias
}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, proj_size), \
'The shape of h0 should be (batch_size, %d)' % proj_size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
if cell_clip:
assert cell_clip >= 0, "cell_clip should not be negtive."
if proj_clip:
assert proj_clip >= 0, "proj_clip should not be negtive."
helper.append_op(
type='lstmp',
inputs=inputs,
outputs={
'Projection': projection,
'Cell': cell,
'BatchHidden': batch_hidden,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'cell_clip': cell_clip,
'proj_clip': proj_clip,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation,
'proj_activation': proj_activation
})
return projection, cell
def dynamic_gru(input,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation='sigmoid',
candidate_activation='tanh',
h_0=None,
origin_mode=False):
"""
**Note: The input type of this must be LoDTensor. If the input type to be
processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` .
This operator is used to perform the calculations for a single layer of
Gated Recurrent Unit (GRU) on full sequences step by step. The calculations
in one time step support these two modes:
If ``origin_mode`` is True, then the formula used is from paper
`Learning Phrase Representations using RNN Encoder Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
if ``origin_mode`` is False, then the formula used is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
:math:`x_t` is the input of current time step, but it is not from ``input`` .
This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
**Note** thus a fully-connect layer whose size is 3 times of ``size`` should
be used before this operator, and the output should be used as ``input`` here.
:math:`h_{t-1}` is the hidden state from previous time step.
:math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
update gate, reset gate, candidate hidden and hidden output separately.
:math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
the weight matrix and bias used in update gate, reset gate, candidate hidden
calculations. For implementation, the three weight matrix are merged into a
tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
are concatenated with shape :math:`[D, D \\times 2]` lying on the first part,
and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .
Args:
input(Variable): A LoDTensor whose lod level is 1, representing the input
after linear projection. Its shape should be :math:`[T, D \\times 3]` ,
where :math:`T` stands for the total sequence lengths in this mini-batch,
:math:`D` for the hidden size. The data type should be float32 or float64.
size(int): Indicate the hidden size.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
is_reverse(bool, optional): Whether to compute in the reversed order of
input sequences. Default False.
gate_activation(str, optional): The activation fuction corresponding to
:math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "sigmoid".
candidate_activation(str, optional): The activation fuction corresponding to
:math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "tanh".
h_0 (Variable, optional): A Tensor representing the initial hidden state.
It not provided, the default initial hidden state is 0. The shape is
:math:`[N, D]` , where :math:`N` is the number of sequences in the
mini-batch, :math:`D` for the hidden size. The data type should be
same as ``input`` . Default None.
Returns:
Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \
where :math:`T` stands for the total sequence lengths in this mini-batch \
:math:`D` for the hidden size. It represents GRU transformed sequence output, \
and has the same lod and data type with ``input`` .
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='sequence',
shape=[None],
dtype='int64',
lod_level=1)
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
"""
assert in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals())
dtype = helper.input_dtype()
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
bias = helper.create_parameter(
attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
batch_size = input.shape[0]
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
if h_0:
assert h_0.shape == (
batch_size, size
), 'The shape of h0 should be(batch_size, %d)' % size
inputs['H0'] = h_0
hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gru',
inputs=inputs,
outputs={
'Hidden': hidden,
'BatchGate': batch_gate,
'BatchResetHiddenPrev': batch_reset_hidden_prev,
'BatchHidden': batch_hidden
},
attrs={
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'activation': candidate_activation,
'origin_mode': origin_mode
})
return hidden
def gru_unit(input,
hidden,
size,
param_attr=None,
bias_attr=None,
activation='tanh',
gate_activation='sigmoid',
origin_mode=False):
"""
Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for
one time step and it supports these two modes:
If ``origin_mode`` is True, then the formula used is from paper
`Learning Phrase Representations using RNN Encoder Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
if ``origin_mode`` is False, then the formula used is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
:math:`x_t` is the input of current time step, but it is not ``input`` .
This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
**Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should
be used before this operator, and the output should be used as ``input`` here.
:math:`h_{t-1}` is the hidden state from previous time step.
:math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
update gate, reset gate, candidate hidden and hidden output separately.
:math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
the weight matrix and bias used in update gate, reset gate, candidate hidden
calculations. For implementation, the three weight matrix are merged into a
tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
are concatenated with shape :math:`[D, D \\times 2]` lying on the first part,
and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .
Args:
input(Variable): A 2D Tensor representing the input after linear projection
after linear projection. Its shape should be :math:`[N, D \\times 3]` ,
where :math:`N` stands for batch size, :math:`D` for the hidden size.
The data type should be float32 or float64.
hidden(Variable): A 2D Tensor representing the hidden state from previous step.
Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size,
:math:`D` for the hidden size. The data type should be same as ``input`` .
size(int): Indicate the hidden size.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
activation(str, optional): The activation fuction corresponding to
:math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "tanh".
gate_activation(str, optional): The activation fuction corresponding to
:math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "sigmoid".
Returns:
tuple: The tuple contains three Tensor variables with the same data type \
as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \
reseted previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \
concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \
:math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \
Usually only the hidden state for next time step ( :math:`h_t` ) is used \
as output and state, the other two are intermediate results of calculations.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='step_data', shape=[None], dtype='int64')
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
hidden = fluid.layers.gru_unit(
input=x, hidden=pre_hidden, size=hidden_dim * 3)
"""
activation_dict = dict(
identity=0,
sigmoid=1,
tanh=2,
relu=3, )
activation = activation_dict[activation]
gate_activation = activation_dict[gate_activation]
helper = LayerHelper('gru_unit', **locals())
dtype = helper.input_dtype()
size = size // 3
# create weight
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
gate = helper.create_variable_for_type_inference(dtype)
reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
updated_hidden = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
# create bias
if helper.bias_attr:
bias_size = [1, 3 * size]
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
helper.append_op(
type='gru_unit',
inputs=inputs,
outputs={
'Gate': gate,
'ResetHiddenPrev': reset_hidden_pre,
'Hidden': updated_hidden,
},
attrs={
'activation': 2, # tanh
'gate_activation': 1, # sigmoid
'origin_mode': origin_mode
})
return updated_hidden, reset_hidden_pre, gate
@templatedoc()
def linear_chain_crf(input, label, param_attr=None, length=None):
"""
......@@ -2198,244 +1336,34 @@ def chunk_eval(input,
num_correct_chunks)
@templatedoc()
def sequence_conv(input,
num_filters,
filter_size=3,
filter_stride=1,
padding=True,
padding_start=None,
bias_attr=None,
param_attr=None,
act=None,
name=None):
def softmax(input, use_cudnn=False, name=None, axis=-1):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ).
This operator implements the softmax layer. The calculation process is as follows:
This operator receives input sequences with variable length and other convolutional
configuration parameters(num_filters, filter_size) to apply the convolution operation.
It fills all-zero padding data on both sides of the sequence by default to ensure that
the output is the same length as the input. You can customize the padding behavior by
configuring the parameter :attr:`padding\_start` .
1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
**Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.
2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is the same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
.. code-block:: text
3. After the softmax operation is completed, the inverse operations of steps 1 and 2
are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
Here we will illustrate the details of the padding operation:
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2.
input.data = [[1, 1],
[2, 2],
[3, 3],
[4, 4]]
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
For each row :math:`i` and each column :math:`j` in the matrix, we have:
* Case1:
.. math::
If padding_start is -1 and filter_size is 3.
The length of padding data is calculated as follows:
up_pad_len = max(0, -padding_start) = 1
down_pad_len = max(0, filter_size + padding_start - 1) = 1
The output of the input sequence after padding is:
data_aftet_padding = [[0, 0, 1, 1, 2, 2],
[1, 1, 2, 2, 3, 3],
[2, 2, 3, 3, 0, 0],
[0, 0, 4, 4, 0, 0]]
It will be multiplied by the filter weight to get the final output.
Assume num_filters = 3
output.data = [[ 0.3234, -0.2334, 0.7433],
[ 0.5646, 0.9464, -0.1223],
[-0.1343, 0.5653, 0.4555],
[ 0.9954, -0.1234, -0.1234]]
output.shape = [4, 3] # 3 = num_filters
output.lod = [[0, 3, 4]] # Remain the same
Args:
input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch
and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or
float64.
num_filters (int): the number of filters.
filter_size (int): the height of filter. Specified filter width is not supported, the width is
hidden_size by default. Default: 3.
filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
future. Currently, it will always pad input to make sure the length of the output is
the same as input whether :attr:`padding` is set true or false. Because the length of
input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
result to not be computed correctly. These padding data will not be trainable or updated
while trainnig. Default: True.
padding_start (int): It is used to indicate the start index for padding the input
sequence, which can be negative. The negative number means to pad
:attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
The positive number means to skip :attr:`padding_start` time-steps of each instance,
and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
at the end of the sequence to ensure that the output is the same length as the input.
If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
is padded at the end of each input sequence. Default: None.
bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_variable_for_type_inference(dtype)
if padding_start is None:
padding_start = -int(filter_size // 2)
helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': [filter_param],
},
outputs={"Out": pre_bias},
attrs={
'contextStride': filter_stride,
'contextStart': padding_start,
'contextLength': filter_size,
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
def sequence_softmax(input, use_cudnn=False, name=None):
"""
**Note**:
**The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax`
A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence.
The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N`
is the sum of the length of all sequences. Recommended usage: :math:`[N]`.
For i-th sequence in a mini-batch:
.. math::
Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}
For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order),
the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]],
then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`,
and :math:`N` turns out to be 15.
.. code-block:: text
*Case 1:
Given:
input.data = [0.7, 1, 0.6,
1.5, 1.1,
1.2, 0.2, 0.6, 1.9,
3.1,
2.5, 0.8,
0.1, 2.4, 1.3]
input.lod = [[0, 3, 5, 9, 10, 12, 15]]
then:
output.data = [0.30724832, 0.41474187, 0.2780098,
0.59868765, 0.40131235,
0.2544242, 0.09359743, 0.13963096, 0.5123474,
1.,
0.84553474, 0.15446526,
0.06995796, 0.69777346, 0.23226859]
output.lod = [[0, 3, 5, 9, 10, 12, 15]]
Args:
input (Variable):A LoDTensor with shape of :math:`[N, 1]` or :math:`[N]`, Recommended usage: :math:`[N]`.
Supported data types: float32, float64.
use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle
library is installed and GPU is used for training or reasoning. Default: False.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: A LoD-Tensor which has the same shape and data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_sequence_softmax_1 = fluid.layers.sequence_softmax(input=x)
y = fluid.data(name='y', shape=[7],
dtype='float32', lod_level=1)
x_sequence_softmax_2 = fluid.layers.sequence_softmax(input=y)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_softmax",
inputs={"X": input},
outputs={"Out": softmax_out},
attrs={"use_cudnn": use_cudnn})
return softmax_out
def softmax(input, use_cudnn=False, name=None, axis=-1):
"""
This operator implements the softmax layer. The calculation process is as follows:
1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is the same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
3. After the softmax operation is completed, the inverse operations of steps 1 and 2
are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in the matrix, we have:
.. math::
Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
Example:
......@@ -3061,493 +1989,148 @@ def conv3d(input,
return helper.append_activation(pre_act)
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
@templatedoc()
def pool2d(input,
pool_size=-1,
pool_type="max",
pool_stride=1,
pool_padding=0,
global_pooling=False,
use_cudnn=True,
ceil_mode=False,
name=None,
exclusive=True,
data_format="NCHW"):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ).
This operator only supports LoDTensor as input. It will apply specified pooling
operation on the input LoDTensor. It pools features of all time-steps of each
sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters,
such as sum, average, sqrt, etc.
It supports six pool_type:
- average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
- sum: :math:`Out[i] = \sum_jX_{ij}`
- sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
- max: :math:`Out[i] = max(X_i)`
- last: :math:`Out[i] = X_{N_i}`
- first: :math:`Out[i]` = X_0
where :math:`N_i` is the length of i-th input sequence.
.. code-block:: text
Case 1:
input is a 1-level LoDTensor and pad_value = 0.0:
input.lod = [[0, 2, 5, 7, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is LoDTensor:
out.shape = [4, 1]
with condition out.shape[0] == len(x.lod[-1]) == 4
for different pool_type:
average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2
sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1.
sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2)
max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.)
last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)
and all above [0.0] at last of out.data is padding data.
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
where out.shape[0] == len(x.lod[-1]) == 5
sum: out.data = [[1.], [5.], [4.], [0.0], [12.]]
where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1.
${comment}
Args:
input (variable): LoDTensor with lod_level no more than 2. The data type should be float32.
pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first.
is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is
created to record the index information corresponding to the maximum value, which is used for backward
gradient calculation in the training phase. Default: False.
pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0
input (Variable): The input tensor of pooling operator which is a 4-D tensor with
shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
`"NHWC"`, where `N` is batch size, `C` is the number of channels,
`H` is the height of the feature, and `W` is the width of the
feature. The data type if float32 or float64.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
`pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is `true`.
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
Variable: LoDTensor after pooling with data type float32.
Variable: The output tensor of pooling result. The data type is same as input tensor.
Raises:
ValueError: If `pool_type` is not "max" nor "avg".
ValueError: If `global_pooling` is False and `pool_size` is -1.
TypeError: If `use_cudnn` is not a bool value.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
ShapeError: If the input is not a 4-D or 5-D Tensor.
ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
ShapeError: If the output's shape calculated is not greater than 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
max_index = helper.create_variable_for_type_inference(dtype)
data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
helper.append_op(
type="sequence_pool",
inputs={"X": input},
outputs={"Out": pool_out,
"MaxIndex": max_index},
attrs={
"pooltype": pool_type.upper(),
"is_test": is_test,
"pad_value": pad_value
})
# max pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "max",
pool_stride = 1,
global_pooling=False)
# when pool_type is max, variable max_index is initialized,
# so we stop the gradient explicitly here
if pool_type == 'max':
max_index.stop_gradient = True
# average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=False)
return pool_out
# global average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=True)
# Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
out_1 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = [1, 2, 1, 0],
data_format = "NCHW")
@templatedoc()
def sequence_concat(input, name=None):
# Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
out_2 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = "VALID",
data_format = "NCHW")
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ).
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information,
and outputs the concatenated LoDTensor.
if global_pooling is False and pool_size == -1:
raise ValueError(
"When Attr(global_pooling) is False, Attr(pool_size) must be passed "
"and be a valid value. Received pool_size: %s." % str(pool_size))
.. code-block:: text
if not isinstance(use_cudnn, bool):
raise TypeError("Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): %s." % str(use_cudnn))
input is a list of LoDTensor:
input = [x1, x2]
where:
x1.lod = [[0, 3, 5]]
x1.data = [[1], [2], [3], [4], [5]]
x1.shape = [5, 1]
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s." % str(data_format))
x2.lod = [[0, 2, 4]]
x2.data = [[6], [7], [8], [9]]
x2.shape = [4, 1]
and should satisfy: len(x1.lod[0]) == len(x2.lod[0])
pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
output is LoDTensor:
out.lod = [[0, 3+2, 5+4]]
out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]]
out.shape = [9, 1]
Args:
input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same.
The data type can be float32, float64 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: Output the concatenated LoDTensor. The data type is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1)
out = fluid.layers.sequence_concat(input=[x, y])
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
return out
def sequence_first_step(input):
"""
This operator only supports LoDTensor as input. Given the input LoDTensor, it will
select first time-step feature of each sequence as output.
.. code-block:: text
Case 1:
input is 1-level LoDTensor:
input.lod = [[0, 2, 5, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is a LoDTensor:
out.shape = [3, 1]
out.shape[0] == len(x.lod[-1]) == 3
out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is a LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
out.shape[0] == len(x.lod[-1]) == 5
out.data = [[1.], [3.], [4.], [0.0], [6.]]
where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)
Args:
input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.
Returns:
Variable: LoDTensor consist of the sequence's first step vector. The data type is float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
return sequence_pool(input=input, pool_type="first")
def sequence_last_step(input):
"""
This operator only supports LoDTensor as input. Given the input LoDTensor, it will
select last time-step feature of each sequence as output.
.. code-block:: text
Case 1:
input is 1-level LoDTensor:
input.lod = [[0, 2, 5, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is a LoDTensor:
out.shape = [3, 1]
out.shape[0] == len(x.lod[-1]) == 3
out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is a LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
out.shape[0] == len(x.lod[-1]) == 5
out.data = [[1.], [2.], [4.], [0.0], [1.]]
where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.)
Args:
input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.
Returns:
Variable: LoDTensor consist of the sequence's last step vector. The data type is float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
return sequence_pool(input=input, pool_type="last")
def sequence_slice(input, offset, length, name=None):
"""
**Sequence Slice Layer**
The layer crops a subsequence from given sequence with given start
offset and subsequence length.
It only supports sequence data (LoDTensor with lod_level equal to 1).
.. code-block:: text
- Case:
Given the input Variable **input**:
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.lod = [[3, 2]],
input.dims = (5, 2),
with offset.data = [[0], [1]] and length.data = [[2], [1]],
the output Variable will be
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.lod = [[2, 1]],
out.dims = (3, 2).
Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
Args:
input(Variable): LoDTensor, The input Variable which consists of the complete
sequences.The data type is float32 or float64.
offset(Variable): LoDTensor, The offset to slice each sequence.The data
type is int32 or int64.
length(Variable): LoDTensor, The length of each subsequence.The data
type is int32 or int64.
name(str|None): The default value is None. Normally there is no need
for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Variable: The output subsequences.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
seqs = fluid.data(name='x', shape=[10, 5],
dtype='float32', lod_level=1)
offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
offset.stop_gradient = True
length.stop_gradient = True
helper.append_op(
type="sequence_slice",
inputs={"X": input,
"Offset": offset,
"Length": length},
outputs={"Out": out})
return out
@templatedoc()
def pool2d(input,
pool_size=-1,
pool_type="max",
pool_stride=1,
pool_padding=0,
global_pooling=False,
use_cudnn=True,
ceil_mode=False,
name=None,
exclusive=True,
data_format="NCHW"):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator which is a 4-D tensor with
shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
`"NHWC"`, where `N` is batch size, `C` is the number of channels,
`H` is the height of the feature, and `W` is the width of the
feature. The data type if float32 or float64.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
`pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is `true`.
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
Variable: The output tensor of pooling result. The data type is same as input tensor.
Raises:
ValueError: If `pool_type` is not "max" nor "avg".
ValueError: If `global_pooling` is False and `pool_size` is -1.
TypeError: If `use_cudnn` is not a bool value.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
ShapeError: If the input is not a 4-D or 5-D Tensor.
ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
ShapeError: If the output's shape calculated is not greater than 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
# max pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "max",
pool_stride = 1,
global_pooling=False)
# average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=False)
# global average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=True)
# Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
out_1 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = [1, 2, 1, 0],
data_format = "NCHW")
# Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
out_2 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = "VALID",
data_format = "NCHW")
"""
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if global_pooling is False and pool_size == -1:
raise ValueError(
"When Attr(global_pooling) is False, Attr(pool_size) must be passed "
"and be a valid value. Received pool_size: %s." % str(pool_size))
if not isinstance(use_cudnn, bool):
raise TypeError("Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): %s." % str(use_cudnn))
if data_format not in ["NCHW", "NHWC"]:
raise ValueError(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s." % str(data_format))
pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
def update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
def update_padding(padding, data_format):
def is_list_or_tuple(ele):
if isinstance(ele, list) or isinstance(ele, tuple):
return True
return False
if is_list_or_tuple(padding) and len(padding) == 4:
if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
......@@ -5383,868 +3966,93 @@ def conv3d_transpose(input,
raise ValueError(
"Non-zero padding(%s) in the batch or channel dimensions "
"is not supported." % str(padding))
padding = padding[1:4]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 6, 'padding')
elif is_list_or_tuple(padding) and len(padding) == 6:
padding = utils.convert_to_list(padding, 6, 'padding')
else:
padding = utils.convert_to_list(padding, 3, 'padding')
padding = [
padding[0], padding[0], padding[1], padding[1], padding[2],
padding[2]
]
return padding
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
str(padding))
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0, 0, 0]
padding = _update_padding(padding, data_format)
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
padding[1] - 1) // dilation[0] + 1
filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
padding[3] - 1) // dilation[1] + 1
filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
padding[5] - 1) // dilation[2] + 1
filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(filter_size, 3,
'conv3d_transpose.filter_size')
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
if data_format == 'NCDHW':
data_format = 'NCHW'
if data_format == 'NDHWC':
data_format = 'NHWC'
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=l_type,
inputs={'Input': [input],
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format
})
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
out = helper.append_activation(pre_act)
return out
def sequence_expand(x, y, ref_level=-1, name=None):
"""Sequence Expand Layer. This layer will expand the input variable ``x`` \
according to specified level ``ref_level`` lod of ``y``. Please note that \
the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \
the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \
of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \
be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \
When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand works:
.. code-block:: text
Case 1
Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d].
Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2].
Input x is a 1-level LoDTensor:
x.lod = [[2, 2]] #lod based on length may be easier to understand
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
input y is a LoDTensor:
y.lod = [[2, 2], #the 0th level lod, according to this level
[3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level
ref_level: 0
then output is a 1-level LoDTensor out:
out.lod = [[2, 2, 2, 2]] #lod based on offfset
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
Case 2
Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c].
It's obvious that the lod info of expanded sequences is [2, 0, 3].
x is a Tensor:
x.data = [[a], [b], [c]]
x.dims = [3, 1]
y is a LoDTensor:
y.lod = [[2, 0, 3]]
ref_level: -1
then output is a 1-level LodTensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor, with the \
dims ``[M, K]``. The lod level is at most 1. The data type should be \
float32, float64, int8, int32 or int64.
y (Variable): The input variable which is a LoDTensor, the lod level is \
at least 1.
ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \
refer the last level of lod.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \
``N`` depends on the lod info of ``x`` and ``y``. \
The data type is same as input.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.data(name='y', shape=[8, 1],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 2, 4][0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 1 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 2, 4, 6, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 2 1 2 3 4 3 4]
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp},
attrs={'ref_level': ref_level})
return tmp
def sequence_expand_as(x, y, name=None):
"""Sequence Expand As Layer. This OP will expand the input variable ``x`` \
according to the zeroth level lod of ``y``. Current implementation requires \
the level number of ``y``'s lod must be 1, and the first dimension of \
``x`` should be equal to the size of ``y``'s zeroth level lod, thus \
the expanded LodTensor has the same lod info as ``y``. The expanded result \
has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand_as works:
.. code-block:: text
Case 1:
Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d].
It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8].
Given a 1-level LodTensor ``x``:
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
and input ``y``
y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand
then we get 1-level LoDTensor out:
Out.lod = [[0, 3, 6, 7, 8]] #based on offset
Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
Out.dims = [8, 1]
Case 2:
Given a common Tensor ``x``:
x.data = [[a, b], [c, d], [e, f]]
x.dims = [3, 2]
and input ``y``:
y.lod = [[0, 2, 3, 6]]
then we get a 1-level LoDTensor:
out.lod = [[0, 2, 3, 6]]
out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
out.dims = [6, 2]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor, with the \
dims ``[M, K]``. The data type should be float32, float64, int8, int32 \
or int64.
y (Variable): The input variable which is a LoDTensor with 1-level lod.
name (str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \
``N`` depends on the lod of ``y``, and the lod level must be 1. \
The data type is same as input.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 0 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 1 1 2 2 2 3 4]
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand_as',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp})
return tmp
def sequence_pad(x, pad_value, maxlen=None, name=None):
"""
This layer padding the sequences in a same batch to a common length (according \
to ``maxlen``). The padding value is defined by ``pad_value``, and will be \
appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \
the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \
the length information of input sequences. For removing paddding data (unpadding \
operation), See :ref:`api_fluid_layers_sequence_unpad` .
Please note that the input ``x`` should be LodTensor.
.. code-block:: text
Case 1:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a],[b],[c],[d],[e]]
pad_value:
pad_value.data = [0]
maxlen = 4
the output tuple (Out, Length):
Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]]
Length.data = [2, 3] #Original sequences length
Case 2:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [0]
defualt maxlen = None, (the virtual value is 3, according to the shape of x)
the output tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Case 3:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [p1,p2]
defualt maxlen = None, (the virtual value is 3)
get tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Args:
x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \
size is described by lod infor (the number of sequnces ). \
The data type should be float32, float64, int8, int32 or int64.
pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \
with length ``K``. If it's a scalar, it will be automatically broadcasted \
to a Tensor. The data type should be as same as ``x``.
maxlen (int, optional): The length of padded sequences, None by default. \
When it is None, all sequences will be padded up to the length of the \
longest one among them; when it a certain positive value, it must be \
greater than the length of the longest original sequence.
name (str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \
``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \
sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \
The size of ``Length`` is equal to batch size, and the data type is int64.
Return Type: tuple
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
pad_value = fluid.layers.assign(
input=numpy.array([0.0], dtype=numpy.float32))
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length = helper.create_variable_for_type_inference(dtype)
pad_value.stop_gradient = True
length.stop_gradient = True
if maxlen is None:
maxlen = -1
helper.append_op(
type='sequence_pad',
inputs={'X': x,
'PadValue': pad_value},
outputs={'Out': out,
'Length': length},
attrs={'padded_length': maxlen})
return out, length
def sequence_unpad(x, length, name=None):
"""
**Note**:
**The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad`
The OP removes the padding data from the input based on the length information and returns a LoDTensor.
.. code-block:: text
Case 1:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
length.data = [2, 3, 4],
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[0, 2, 5, 9]]
Args:
x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2.
Supported data types: float32, float64, int32, int64.
length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor
has the same shape with the 0th dimension of the X . Supported data types: int64.
name(str|None): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
# pad data
x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
# unpad data
unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length.stop_gradient = True
helper.append_op(
type='sequence_unpad',
inputs={'X': x,
'Length': length},
outputs={'Out': out})
return out
def beam_search(pre_ids,
pre_scores,
ids,
scores,
beam_size,
end_id,
level=0,
is_accumulated=True,
name=None,
return_parent_idx=False):
"""
Beam search is a classical algorithm for selecting candidate words in a
machine translation task.
Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
**This operator only supports LoDTensor.** It is used after finishing
scores calculation to perform beam search for one time step. Specifically,
after ``ids`` and ``scores`` have been produced, it selects the top-K
( `k` is ``beam_size`` ) candidate word ids of current step from ``ids``
according to the correspongding ``scores``. Additionally, ``pre_id`` and
``pre_scores`` are the output of `beam_search` at previous step, they
are needed for special use to handle ended candidate translations.
Note that if ``is_accumulated`` is True, the ``scores`` passed in should
be accumulated scores. Otherwise, the ``scores`` are
considered as the probabilities of single step and would be transformed to
the log field and added up with ``pre_scores`` for final scores in this
operator. Length penalty should be done with extra operators before calculating
the accumulated scores if needed.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
pre_ids(Variable): A LodTensor variable (lod level is 2), representing
the selected ids of previous step. It is the output of beam_search
at previous step. Its shape is `[batch_size, 1]` and its lod is
`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
first step. The data type should be int64.
pre_scores(Variable): A LodTensor variable has the same shape and lod
with ``pre_ids`` , representing the accumulated scores corresponding
to the selected ids of previous step. It is the output of
beam_search at previous step. The data type should be float32.
ids(Variable|None): A LodTensor variable containing the candidates ids.
It has the same lod with ``pre_ids`` and its shape should be
`[batch_size * beam_size, K]`, where `K` supposed to be greater than
``beam_size`` and the first dimension size (decrease as samples reach
to the end) should be same as that of ``pre_ids`` . The data type
should be int64. It can be None, which use indice in ``scores`` as
ids.
scores(Variable): A LodTensor variable containing the accumulated
scores corresponding to ``ids`` . Both its shape and lod are same as
thoes of ``ids`` . The data type should be float32.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
level(int): **It can be ignored and mustn't change currently.**
The 2 level lod used in this operator has the following
meaning: The first level describes how many beams each sample has,
which would change to 0 when beams of the sample all end (batch reduce);
The second level describes how many times each beam is selected.
Default 0, which shouldn't be changed currently.
is_accumulated(bool): Whether the input ``score`` is accumulated scores.
Default True.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
return_parent_idx(bool, optional): Whether to return an extra Tensor variable
in output, which stores the selected ids' parent indice in
``pre_ids`` and can be used to update RNN's states by gather operator.
Default False.
Returns:
tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \
representing the selected ids and the corresponding accumulated scores of \
current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \
and have data types int64 and float32. If ``return_parent_idx`` is True, \
an extra Tensor variable preserving the selected ids' parent indice \
is included, whose shape is `[batch_size * beam_size]` and data type \
is int64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `probs` contains predicted results from the computation
# cell and `pre_ids` and `pre_scores` is the output of beam_search
# at previous step.
beam_size = 4
end_id = 1
pre_ids = fluid.data(
name='pre_id', shape=[None, 1], lod_level=2, dtype='int64')
pre_scores = fluid.data(
name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32')
probs = fluid.data(
name='probs', shape=[None, 10000], dtype='float32')
topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
accu_scores = fluid.layers.elementwise_add(
x=fluid.layers.log(x=topk_scores),
y=fluid.layers.reshape(pre_scores, shape=[-1]),
axis=0)
selected_ids, selected_scores = fluid.layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=end_id)
"""
helper = LayerHelper('beam_search', **locals())
score_type = pre_scores.dtype
id_type = pre_ids.dtype
inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
if ids is not None:
inputs["ids"] = ids
selected_scores = helper.create_variable_for_type_inference(
dtype=score_type)
selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
# parent_idx is a tensor used to gather cell states at the next time
# step. Though lod in selected_ids can also be used to gather by
# sequence_expand, it is not efficient.
# gather_op's index input only supports int32 dtype currently
parent_idx = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type='beam_search',
inputs=inputs,
outputs={
'selected_ids': selected_ids,
'selected_scores': selected_scores,
'parent_idx': parent_idx
},
attrs={
# TODO(ChunweiYan) to assure other value support
'level': level,
'beam_size': beam_size,
'end_id': end_id,
'is_accumulated': is_accumulated,
})
if return_parent_idx:
return selected_ids, selected_scores, parent_idx
else:
return selected_ids, selected_scores
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
"""
This operator is used after beam search has completed. It constructs the
full predicted sequences for each sample by walking back along the search
paths stored in lod of ``ids`` . The result sequences are stored in a
LoDTensor, which uses the following way to parse:
.. code-block:: text
If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
The first level of lod stands for: There are 2 samples each having 3
(beam width) predicted sequence.
The second level of lod stands for: The lengths of the first sample's
3 predicted sequences are 12, 12, 16; The lengths of the second sample's
3 predicted sequences are 14, 13, 15.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
ids(Variable): The LoDTensorArray variable containing the selected ids
of all steps. Each LoDTensor in it has int64 data type and 2 level
lod which can be used to get the search paths.
scores(Variable): The LodTensorArray variable containing the accumulated
scores corresponding to selected ids of all steps. It has the same size
as ``ids`` . Each LoDTensor in it has the same shape and lod as the
counterpart in ``ids`` , and has a float32 data type.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
tuple: The tuple contains two LodTensor variables. The two LodTensor, \
containing the full sequences of ids and the correspongding accumulated \
scores, have the same shape flattened to 1D and have the same 2 level \
lod. The lod can be used to get how many predicted sequences each sample \
has and how many ids each predicted sequence has.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `ids` and `scores` are LodTensorArray variables reserving
# the selected ids and scores of all steps
ids = fluid.layers.create_array(dtype='int64')
scores = fluid.layers.create_array(dtype='float32')
finished_ids, finished_scores = fluid.layers.beam_search_decode(
ids, scores, beam_size=5, end_id=0)
"""
helper = LayerHelper('beam_search_decode', **locals())
sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
helper.append_op(
type="beam_search_decode",
inputs={"Ids": ids,
"Scores": scores},
outputs={
"SentenceIds": sentence_ids,
"SentenceScores": sentence_scores
},
attrs={"beam_size": beam_size,
"end_id": end_id})
return sentence_ids, sentence_scores
def lstm_unit(x_t,
hidden_t_prev,
cell_t_prev,
forget_bias=0.0,
param_attr=None,
bias_attr=None,
name=None):
"""
Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for
one time step, whose implementation is based on calculations described in `RECURRENT
NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_ .
We add forget_bias to the biases of the forget gate in order to
reduce the scale of forgetting. The formula is as follows:
.. math::
i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})
f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)
c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})
padding = padding[1:4]
padding = [ele for a_list in padding for ele in a_list]
padding = utils.convert_to_list(padding, 6, 'padding')
o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})
elif is_list_or_tuple(padding) and len(padding) == 6:
padding = utils.convert_to_list(padding, 6, 'padding')
h_{t} & = o_{t} tanh (c_{t})
else:
padding = utils.convert_to_list(padding, 3, 'padding')
padding = [
padding[0], padding[0], padding[1], padding[1], padding[2],
padding[2]
]
return padding
:math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step;
:math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` ,
representing the output of from previous time step.
:math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate
and hidden calculation.
padding_algorithm = "EXPLICIT"
if isinstance(padding, str):
padding = padding.upper()
if padding not in ["SAME", "VALID"]:
raise ValueError(
"Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
str(padding))
if padding == "VALID":
padding_algorithm = "VALID"
padding = [0, 0, 0, 0, 0, 0]
elif padding == "SAME":
padding_algorithm = "SAME"
padding = [0, 0, 0, 0, 0, 0]
Args:
x_t(Variable): A 2D Tensor representing the input of current time step.
Its shape should be :math:`[N, M]` , where :math:`N` stands for batch
size, :math:`M` for the feature size of input. The data type should
be float32 or float64.
hidden_t_prev(Variable): A 2D Tensor representing the hidden value from
previous step. Its shape should be :math:`[N, D]` , where :math:`N`
stands for batch size, :math:`D` for the hidden size. The data type
should be same as ``x_t`` .
cell_t_prev(Variable): A 2D Tensor representing the cell value from
previous step. It has the same shape and data type with ``hidden_t_prev`` .
forget_bias (float, optional): :math:`forget\\_bias` added to the biases
of the forget gate. Default 0.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
padding = _update_padding(padding, data_format)
Returns:
tuple: The tuple contains two Tensor variables with the same shape and \
data type with ``hidden_t_prev`` , representing the hidden value and \
cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \
the formula.
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
Raises:
ValueError: Rank of x_t must be 2.
ValueError: Rank of hidden_t_prev must be 2.
ValueError: Rank of cell_t_prev must be 2.
ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same.
ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same.
d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Examples:
filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
padding[1] - 1) // dilation[0] + 1
filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
padding[3] - 1) // dilation[1] + 1
filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
padding[5] - 1) // dilation[2] + 1
filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(filter_size, 3,
'conv3d_transpose.filter_size')
.. code-block:: python
if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
padding = [padding[0], padding[2], padding[4]]
import paddle.fluid as fluid
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
dict_dim, emb_dim, hidden_dim = 128, 64, 512
data = fluid.data(name='step_data', shape=[None], dtype='int64')
x = fluid.embedding(input=data, size=[dict_dim, emb_dim])
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, hidden_dim], dtype='float32')
hidden = fluid.layers.lstm_unit(
x_t=x,
hidden_t_prev=pre_hidden,
cell_t_prev=pre_cell)
"""
helper = LayerHelper('lstm_unit', **locals())
if len(x_t.shape) != 2:
raise ValueError("Rank of x_t must be 2.")
if len(hidden_t_prev.shape) != 2:
raise ValueError("Rank of hidden_t_prev must be 2.")
if len(cell_t_prev.shape) != 2:
raise ValueError("Rank of cell_t_prev must be 2.")
if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
0] != cell_t_prev.shape[0]:
raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
"cell_t_prev must be the same.")
if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
raise ValueError("The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same.")
if bias_attr is None:
bias_attr = ParamAttr()
size = cell_t_prev.shape[1]
concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
fc_out = fc(input=concat_out,
size=4 * size,
param_attr=param_attr,
bias_attr=bias_attr)
dtype = x_t.dtype
c = helper.create_variable_for_type_inference(dtype)
h = helper.create_variable_for_type_inference(dtype)
if data_format == 'NCDHW':
data_format = 'NCHW'
if data_format == 'NDHWC':
data_format = 'NHWC'
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='lstm_unit',
inputs={"X": fc_out,
"C_prev": cell_t_prev},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
type=l_type,
inputs={'Input': [input],
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'padding_algorithm': padding_algorithm,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'data_format': data_format
})
return h, c
if data_format == 'NCHW':
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
else:
pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
out = helper.append_activation(pre_act)
return out
def reduce_sum(input, dim=None, keep_dim=False, name=None):
......@@ -7521,63 +5329,6 @@ def warpctc(input,
return loss_out
def sequence_reshape(input, new_dim):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ).
This operator only supports LoDTensor as input. Given :attr:`new_dim` ,
it will compute new shape according to original length of each sequence,
original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor
containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor.
Please make sure that (original length * original dimensions) can be divided
by the :attr:`new_dim` with no remainder for each sequence.
.. code-block:: text
input is a LoDTensor:
input.lod = [[0, 2, 6]]
input.data = [[1, 2], [3, 4],
[5, 6], [7, 8],
[9, 10], [11, 12]]
input.shape = [6, 2]
set new_dim = 4
out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]
out.shape = [3, 4]
Args:
input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should
be int32, int64, float32 or float64.
new_dim (int): New dimension that the input LoDTensor is reshaped to.
Returns:
Variable: Reshaped LoDTensor according to new dimension. The data type is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype())
helper.append_op(
type='sequence_reshape',
inputs={'X': [input]},
outputs={'Out': [out]},
attrs={'new_dim': new_dim})
return out
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
......@@ -11074,84 +8825,6 @@ def scatter_nd(index, updates, shape, name=None):
return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
def sequence_scatter(input, index, updates, name=None):
"""
**Note**:
**The index and updates parameters of the OP must be LoDTensor.**
Plus the updates data to the correspoding input according to the index.
The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] + updates[pos],
where instance_idx is the K sample corresponding to pos in batch.
The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found,
out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j].
For example, in the following example, the lod information for index is divided into three sequences. Among
them, because the element 0 can be found in the first interval of the index, it is updated with the value of
the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot
be found in the third interval of index, out[2][1] = input[2][1].
.. code-block:: text
*Case 1:
Given:
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
input.dims = [3, 6]
index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
index.lod = [[0, 3, 8, 12]]
updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
updates.lod = [[ 0, 3, 8, 12]]
Then:
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
out.dims = X.dims = [3, 6]
Args:
input (Variable): A Tensor with shape of :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64.
index (Variable): A LoDTensor contains index information. Its LoD level must be 1 and its data type must be int64.
updates (Variable): A LodTensor contains updates information. It has the same LoD level with the index and has the
same data type with the input. Supported data types: float32, float64, int32, int64.
name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Variable: A Tensor which has been updated. It has the same shape and data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.data( name="x", shape=[None, 3, 6], dtype='float32' )
index = fluid.data( name='index', shape=[12, 1], dtype='int64', lod_level=1)
updates = fluid.data( name='updates', shape=[12, 1], dtype='float32', lod_level=1)
output = fluid.layers.sequence_scatter(input, index, updates)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_scatter",
inputs={"X": input,
"Ids": index,
"Updates": updates},
outputs={"Out": out})
return out
@templatedoc()
def random_crop(x, shape, seed=None):
"""
......@@ -12582,146 +10255,6 @@ def flatten(x, axis=1, name=None):
return out
def sequence_enumerate(input, win_size, pad_value=0, name=None):
"""
Generate a new sequence for the input index sequence with \
shape ``[d_1, win_size]``, which enumerates all the \
sub-sequences with length ``win_size`` of the input with \
shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation.
Please note that the `input` must be LodTensor.
.. code-block:: text
Input x:
x.lod = [[0, 3, 5]]
x.data = [[1], [2], [3], [4], [5]]
x.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
out.lod = [[0, 3, 5]]
out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
out.dims = [5, 2]
Args:
input (Variable): The input variable which is a index sequence, \
which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \
The data type should be float32, float64, int8, int32 or int64.
win_size (int): The window size for enumerating all sub-sequences.
pad_value (int, optional): The padding value, default 0.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The enumerate sequence variable which is a LoDTensor with \
shape ``[d_1, win_size]`` and 1-level lod info. \
The data type is same as ``input``.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True)
helper.append_op(
type='sequence_enumerate',
inputs={'X': input},
outputs={'Out': out},
attrs={'win_size': win_size,
'pad_value': pad_value})
return out
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
"""
**SequenceMask Layer**
This layer outputs a mask according to the input :code:`x` and
:code:`maxlen` with data type of :code:`dtype`.
Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
:code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
.. math::
y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))
.. code-block:: text
Case:
Consider input:
x = [3, 1, 1, 0] max_len = 4
then we get out:
mask = [[1, 1, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]]
Args:
x (Variable): Input tensor of sequence_mask layer, \
whose elements are integers less than :code:`maxlen`. \
Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
is None, it would be replace with :math:`max(x)`.
dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \
``int64`` by default.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \
and data type of :code:`dtype`. The data type should be float32, float64, int8, \
int32 or int64.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1)
mask = layers.sequence_mask(x=x)
"""
helper = LayerHelper('sequence_mask', **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
inputs = {'X': [x]}
attrs = {'out_dtype': out.dtype}
if maxlen is not None:
if isinstance(maxlen, Variable):
inputs['MaxLenTensor'] = maxlen
else:
attrs['maxlen'] = maxlen
helper.append_op(
type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)
out.stop_gradient = True
return out
def stack(x, axis=0):
"""
......@@ -15306,68 +12839,6 @@ def space_to_depth(x, blocksize, name=None):
return out
@templatedoc()
def sequence_reverse(x, name=None):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ).
This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor.
Currently it only supports 1-level LoDTensor. This operator is very useful when building a
reverse :ref:`api_fluid_layers_DynamicRNN` network.
.. code-block:: text
input(x) is a LoDTensor:
x.lod = [[0, 2, 5]]
x.data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13,14, 15, 16],
[17,18, 19, 20]]
x.shape = [5, 4]
output LoDTensor with same shape and LoD info:
out.lod = [[0, 2, 5]]
out.data = [[5, 6, 7, 8],
[1, 2, 3, 4],
[17,18, 19, 20],
[13,14, 15, 16],
[9, 10, 11, 12]]
out.shape = [5, 4]
Args:
x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor.
The data type should be float32, float64, int8, int32 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: LoDTensor reversed from input. The data type is same with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_reversed = fluid.layers.sequence_reverse(x)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="sequence_reverse",
inputs={"X": x},
outputs={"Y": out},
attrs=dict())
return out
def affine_channel(x,
scale=None,
bias=None,
......
......@@ -20,7 +20,11 @@ from . import nn
from . import tensor
from . import control_flow
from . import utils
from . import sequence_lod
from .utils import *
from ..layer_helper import LayerHelper
from ..framework import in_dygraph_mode
from ..param_attr import ParamAttr
__all__ = [
'RNNCell',
......@@ -30,6 +34,14 @@ __all__ = [
'BeamSearchDecoder',
'rnn',
'dynamic_decode',
'dynamic_lstm',
'dynamic_lstmp',
'dynamic_gru',
'gru_unit',
'lstm_unit',
'lstm',
'beam_search',
'beam_search_decode',
]
......@@ -433,7 +445,7 @@ def rnn(cell,
if sequence_length:
max_seq_len = nn.shape(flatten(inputs)[0])[0]
mask = nn.sequence_mask(
mask = sequence_lod.sequence_mask(
sequence_length,
maxlen=max_seq_len,
dtype=flatten(initial_states)[0].dtype)
......@@ -1163,3 +1175,1195 @@ def dynamic_decode(decoder,
final_outputs = map_structure(_transpose_batch_time, final_outputs)
return final_outputs, final_states
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
name=None):
"""
**Note**:
1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` .
2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.
The implementation of this OP include diagonal/peephole connections.
Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you do not need peephole connections, please set use_peepholes to False .
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
.. math::
\widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot tanh(c_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
size (int): must be 4 * hidden_size.
h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None.
c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None.
param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.
- Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size].
bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
Please refer to ref:`api_fluid_ParamAttr' . Default: None.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is [1, 4*hidden_size].
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is [1, 7*hidden_size].
use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True.
is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False.
gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid".
cell_activation (str, optional): The activation for cell output. Default: "tanh".
candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh".
dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32".
name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
Returns:
tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :
The hidden state and cell state of LSTM
- hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
- cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
emb_dim = 256
vocab_size = 10000
hidden_dim = 512
data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1)
emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
bias_attr=False)
forward, cell = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
forward.shape # (-1, 512)
cell.shape # (-1, 512)
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
hidden = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
helper.append_op(
type='lstm',
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation
})
return hidden, cell
def lstm(input,
init_h,
init_c,
max_len,
hidden_size,
num_layers,
dropout_prob=0.0,
is_bidirec=False,
is_test=False,
name=None,
default_initializer=None,
seed=-1):
"""
**Note**:
This OP only supports running on GPU devices.
This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) <http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf>`_ .
The implementation of this OP does not include diagonal/peephole connections.
Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` .
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
.. math::
\widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot tanh(c_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len.
hidden_size (int): hidden size of the LSTM.
num_layers (int): total layers number of the LSTM.
dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
There is NO dropout work on rnn output of the last RNN layers.
Default: 0.0.
is_bidirec (bool, optional): If it is bidirectional. Default: False.
is_test (bool, optional): If it is in test phrase. Default: False.
name (str, optional): A name for this layer. If set None, the layer
will be named automatically. Default: None.
default_initializer(Initializer, optional): Where use initializer to initialize the Weight
If set None, defaule initializer will be used. Default: None.
seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1.
Returns:
tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) :
Three tensors, rnn_out, last_h, last_c:
- rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]`
- last_h is the hidden state of the last step of LSTM \
shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
- last_c(Tensor): the cell state of the last step of LSTM \
shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
emb_dim = 256
vocab_size = 10000
data = fluid.data(name='x', shape=[None, 100], dtype='int64')
emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
batch_size = 20
max_len = 100
dropout_prob = 0.2
input_size = 100
hidden_size = 150
num_layers = 1
init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
max_len, hidden_size, num_layers, \
dropout_prob=dropout_prob)
rnn_out.shape # (-1, 100, 150)
last_h.shape # (1, 20, 150)
last_c.shape # (1, 20, 150)
"""
helper = LayerHelper('cudnn_lstm', **locals())
dtype = input.dtype
input_shape = list(input.shape)
input_size = input_shape[-1]
weight_size = 0
for i in range(num_layers):
if i == 0:
input_weight_size = (input_size * hidden_size) * 4
else:
if is_bidirec:
input_weight_size = (hidden_size * 2 * hidden_size) * 4
else:
input_weight_size = (hidden_size * hidden_size) * 4
hidden_weight_size = (hidden_size * hidden_size) * 4
if is_bidirec:
weight_size += (input_weight_size + hidden_weight_size) * 2
weight_size += hidden_size * 8 * 2
else:
weight_size += input_weight_size + hidden_weight_size
weight_size += hidden_size * 8
weight = helper.create_parameter(
attr=helper.param_attr,
shape=[weight_size],
dtype=dtype,
default_initializer=default_initializer)
out = helper.create_variable_for_type_inference(dtype)
last_h = helper.create_variable_for_type_inference(dtype)
last_c = helper.create_variable_for_type_inference(dtype)
cache = helper.create_variable(
persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)
helper.append_op(
type='cudnn_lstm',
inputs={
'Input': input,
'InitH': init_h,
'InitC': init_c,
'W': weight,
'Cache': cache,
},
outputs={
'Out': out,
'last_h': last_h,
'last_c': last_c,
},
attrs={
'max_len': max_len,
'is_bidirec': is_bidirec,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'is_test': is_test,
'dropout_prob': dropout_prob,
'seed': seed,
})
return out, last_h, last_c
def dynamic_lstmp(input,
size,
proj_size,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
proj_activation='tanh',
dtype='float32',
name=None,
h_0=None,
c_0=None,
cell_clip=None,
proj_clip=None):
"""
**Note**:
1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.
This OP implements the LSTMP (LSTM Projected) layer.
The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) <https://ai.google/research/pubs/pub43905.pdf>`_ .
Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer,
which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` .
This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large.
The default implementation of the OP contains diagonal/peephole connections,
please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
If you need to disable the peephole connections, set use_peepholes to False.
This OP computes each timestep as follows:
.. math::
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
.. math::
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
.. math::
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o)
.. math::
\widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
.. math::
c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
.. math::
h_t = o_t \odot act_h(c_t)
.. math::
r_t = \overline{act_h}(W_{rh}h_t)
The symbolic meanings in the formula are as follows:
- :math:`x_{t}` represents the input at timestep :math:`t`
- :math:`h_{t}` represents the hidden state at timestep :math:`t`
- :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}`
- :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively
- :math:`\widetilde{c_t}` represents the candidate cell state
- :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
- :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
- :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
- :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
- :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension
Parameters:
input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports
variable-time length input sequence.
It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
size(int): must be 4 * hidden_size.
proj_size(int): The size of projection output.
param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.
- Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size.
- Projection weight = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P].
bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
Please refer to ref:`api_fluid_ParamAttr' . Default: None.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is [1, 4*hidden_size].
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is [1, 7*hidden_size].
use_peepholes (bool, optional): Whether to use peephole connection or not. Default True.
is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False.
gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid".
cell_activation (str, optional): The activation for cell output. Default "tanh".
candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh".
proj_activation(str, optional): The activation for projection output. Default "tanh".
dtype (str, optional): Data type, can be "float32" or "float64". Default "float32".
name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero.
This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None.
c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero.
This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size.
`h_0` and `c_0` can be None but only at the same time. Default: None.
cell_clip(float, optional): If not None, the cell state is clipped
by this value prior to the cell output activation. Default: None.
proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`. Default: None.
Returns:
tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :
The hidden state and cell state of LSTMP
- hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input.
- cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1)
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4,
proj_size=proj_dim,
use_peepholes=False,
is_reverse=True,
cell_activation="tanh",
proj_activation="tanh")
proj_out.shape # (-1, 256)
last_c.shape # (-1, 512)
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
proj_weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
projection = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
ordered_proj0 = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {
'Input': input,
'Weight': weight,
'ProjWeight': proj_weight,
'Bias': bias
}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, proj_size), \
'The shape of h0 should be (batch_size, %d)' % proj_size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
if cell_clip:
assert cell_clip >= 0, "cell_clip should not be negtive."
if proj_clip:
assert proj_clip >= 0, "proj_clip should not be negtive."
helper.append_op(
type='lstmp',
inputs=inputs,
outputs={
'Projection': projection,
'Cell': cell,
'BatchHidden': batch_hidden,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'cell_clip': cell_clip,
'proj_clip': proj_clip,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation,
'proj_activation': proj_activation
})
return projection, cell
def dynamic_gru(input,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation='sigmoid',
candidate_activation='tanh',
h_0=None,
origin_mode=False):
"""
**Note: The input type of this must be LoDTensor. If the input type to be
processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` .
This operator is used to perform the calculations for a single layer of
Gated Recurrent Unit (GRU) on full sequences step by step. The calculations
in one time step support these two modes:
If ``origin_mode`` is True, then the formula used is from paper
`Learning Phrase Representations using RNN Encoder Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
if ``origin_mode`` is False, then the formula used is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
:math:`x_t` is the input of current time step, but it is not from ``input`` .
This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
**Note** thus a fully-connect layer whose size is 3 times of ``size`` should
be used before this operator, and the output should be used as ``input`` here.
:math:`h_{t-1}` is the hidden state from previous time step.
:math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
update gate, reset gate, candidate hidden and hidden output separately.
:math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
the weight matrix and bias used in update gate, reset gate, candidate hidden
calculations. For implementation, the three weight matrix are merged into a
tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
are concatenated with shape :math:`[D, D \\times 2]` lying on the first part,
and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .
Args:
input(Variable): A LoDTensor whose lod level is 1, representing the input
after linear projection. Its shape should be :math:`[T, D \\times 3]` ,
where :math:`T` stands for the total sequence lengths in this mini-batch,
:math:`D` for the hidden size. The data type should be float32 or float64.
size(int): Indicate the hidden size.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
is_reverse(bool, optional): Whether to compute in the reversed order of
input sequences. Default False.
gate_activation(str, optional): The activation fuction corresponding to
:math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "sigmoid".
candidate_activation(str, optional): The activation fuction corresponding to
:math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "tanh".
h_0 (Variable, optional): A Tensor representing the initial hidden state.
It not provided, the default initial hidden state is 0. The shape is
:math:`[N, D]` , where :math:`N` is the number of sequences in the
mini-batch, :math:`D` for the hidden size. The data type should be
same as ``input`` . Default None.
Returns:
Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \
where :math:`T` stands for the total sequence lengths in this mini-batch \
:math:`D` for the hidden size. It represents GRU transformed sequence output, \
and has the same lod and data type with ``input`` .
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='sequence',
shape=[None],
dtype='int64',
lod_level=1)
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
"""
assert in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals())
dtype = helper.input_dtype()
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
bias = helper.create_parameter(
attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
batch_size = input.shape[0]
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
if h_0:
assert h_0.shape == (
batch_size, size
), 'The shape of h0 should be(batch_size, %d)' % size
inputs['H0'] = h_0
hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gru',
inputs=inputs,
outputs={
'Hidden': hidden,
'BatchGate': batch_gate,
'BatchResetHiddenPrev': batch_reset_hidden_prev,
'BatchHidden': batch_hidden
},
attrs={
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'activation': candidate_activation,
'origin_mode': origin_mode
})
return hidden
def gru_unit(input,
hidden,
size,
param_attr=None,
bias_attr=None,
activation='tanh',
gate_activation='sigmoid',
origin_mode=False):
"""
Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for
one time step and it supports these two modes:
If ``origin_mode`` is True, then the formula used is from paper
`Learning Phrase Representations using RNN Encoder Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
if ``origin_mode`` is False, then the formula used is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
:math:`x_t` is the input of current time step, but it is not ``input`` .
This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
**Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should
be used before this operator, and the output should be used as ``input`` here.
:math:`h_{t-1}` is the hidden state from previous time step.
:math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
update gate, reset gate, candidate hidden and hidden output separately.
:math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
the weight matrix and bias used in update gate, reset gate, candidate hidden
calculations. For implementation, the three weight matrix are merged into a
tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
are concatenated with shape :math:`[D, D \\times 2]` lying on the first part,
and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .
Args:
input(Variable): A 2D Tensor representing the input after linear projection
after linear projection. Its shape should be :math:`[N, D \\times 3]` ,
where :math:`N` stands for batch size, :math:`D` for the hidden size.
The data type should be float32 or float64.
hidden(Variable): A 2D Tensor representing the hidden state from previous step.
Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size,
:math:`D` for the hidden size. The data type should be same as ``input`` .
size(int): Indicate the hidden size.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
activation(str, optional): The activation fuction corresponding to
:math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "tanh".
gate_activation(str, optional): The activation fuction corresponding to
:math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
are supported. Default "sigmoid".
Returns:
tuple: The tuple contains three Tensor variables with the same data type \
as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \
reseted previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \
concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \
:math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \
Usually only the hidden state for next time step ( :math:`h_t` ) is used \
as output and state, the other two are intermediate results of calculations.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.data(name='step_data', shape=[None], dtype='int64')
emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
hidden = fluid.layers.gru_unit(
input=x, hidden=pre_hidden, size=hidden_dim * 3)
"""
activation_dict = dict(
identity=0,
sigmoid=1,
tanh=2,
relu=3, )
activation = activation_dict[activation]
gate_activation = activation_dict[gate_activation]
helper = LayerHelper('gru_unit', **locals())
dtype = helper.input_dtype()
size = size // 3
# create weight
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
gate = helper.create_variable_for_type_inference(dtype)
reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
updated_hidden = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
# create bias
if helper.bias_attr:
bias_size = [1, 3 * size]
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
helper.append_op(
type='gru_unit',
inputs=inputs,
outputs={
'Gate': gate,
'ResetHiddenPrev': reset_hidden_pre,
'Hidden': updated_hidden,
},
attrs={
'activation': 2, # tanh
'gate_activation': 1, # sigmoid
'origin_mode': origin_mode
})
return updated_hidden, reset_hidden_pre, gate
def beam_search(pre_ids,
pre_scores,
ids,
scores,
beam_size,
end_id,
level=0,
is_accumulated=True,
name=None,
return_parent_idx=False):
"""
Beam search is a classical algorithm for selecting candidate words in a
machine translation task.
Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
**This operator only supports LoDTensor.** It is used after finishing
scores calculation to perform beam search for one time step. Specifically,
after ``ids`` and ``scores`` have been produced, it selects the top-K
( `k` is ``beam_size`` ) candidate word ids of current step from ``ids``
according to the correspongding ``scores``. Additionally, ``pre_id`` and
``pre_scores`` are the output of `beam_search` at previous step, they
are needed for special use to handle ended candidate translations.
Note that if ``is_accumulated`` is True, the ``scores`` passed in should
be accumulated scores. Otherwise, the ``scores`` are
considered as the probabilities of single step and would be transformed to
the log field and added up with ``pre_scores`` for final scores in this
operator. Length penalty should be done with extra operators before calculating
the accumulated scores if needed.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
pre_ids(Variable): A LodTensor variable (lod level is 2), representing
the selected ids of previous step. It is the output of beam_search
at previous step. Its shape is `[batch_size, 1]` and its lod is
`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
first step. The data type should be int64.
pre_scores(Variable): A LodTensor variable has the same shape and lod
with ``pre_ids`` , representing the accumulated scores corresponding
to the selected ids of previous step. It is the output of
beam_search at previous step. The data type should be float32.
ids(Variable|None): A LodTensor variable containing the candidates ids.
It has the same lod with ``pre_ids`` and its shape should be
`[batch_size * beam_size, K]`, where `K` supposed to be greater than
``beam_size`` and the first dimension size (decrease as samples reach
to the end) should be same as that of ``pre_ids`` . The data type
should be int64. It can be None, which use indice in ``scores`` as
ids.
scores(Variable): A LodTensor variable containing the accumulated
scores corresponding to ``ids`` . Both its shape and lod are same as
thoes of ``ids`` . The data type should be float32.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
level(int): **It can be ignored and mustn't change currently.**
The 2 level lod used in this operator has the following
meaning: The first level describes how many beams each sample has,
which would change to 0 when beams of the sample all end (batch reduce);
The second level describes how many times each beam is selected.
Default 0, which shouldn't be changed currently.
is_accumulated(bool): Whether the input ``score`` is accumulated scores.
Default True.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
return_parent_idx(bool, optional): Whether to return an extra Tensor variable
in output, which stores the selected ids' parent indice in
``pre_ids`` and can be used to update RNN's states by gather operator.
Default False.
Returns:
tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \
representing the selected ids and the corresponding accumulated scores of \
current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \
and have data types int64 and float32. If ``return_parent_idx`` is True, \
an extra Tensor variable preserving the selected ids' parent indice \
is included, whose shape is `[batch_size * beam_size]` and data type \
is int64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `probs` contains predicted results from the computation
# cell and `pre_ids` and `pre_scores` is the output of beam_search
# at previous step.
beam_size = 4
end_id = 1
pre_ids = fluid.data(
name='pre_id', shape=[None, 1], lod_level=2, dtype='int64')
pre_scores = fluid.data(
name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32')
probs = fluid.data(
name='probs', shape=[None, 10000], dtype='float32')
topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
accu_scores = fluid.layers.elementwise_add(
x=fluid.layers.log(x=topk_scores),
y=fluid.layers.reshape(pre_scores, shape=[-1]),
axis=0)
selected_ids, selected_scores = fluid.layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=end_id)
"""
helper = LayerHelper('beam_search', **locals())
score_type = pre_scores.dtype
id_type = pre_ids.dtype
inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
if ids is not None:
inputs["ids"] = ids
selected_scores = helper.create_variable_for_type_inference(
dtype=score_type)
selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
# parent_idx is a tensor used to gather cell states at the next time
# step. Though lod in selected_ids can also be used to gather by
# sequence_expand, it is not efficient.
# gather_op's index input only supports int32 dtype currently
parent_idx = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type='beam_search',
inputs=inputs,
outputs={
'selected_ids': selected_ids,
'selected_scores': selected_scores,
'parent_idx': parent_idx
},
attrs={
# TODO(ChunweiYan) to assure other value support
'level': level,
'beam_size': beam_size,
'end_id': end_id,
'is_accumulated': is_accumulated,
})
if return_parent_idx:
return selected_ids, selected_scores, parent_idx
else:
return selected_ids, selected_scores
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
"""
This operator is used after beam search has completed. It constructs the
full predicted sequences for each sample by walking back along the search
paths stored in lod of ``ids`` . The result sequences are stored in a
LoDTensor, which uses the following way to parse:
.. code-block:: text
If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
The first level of lod stands for: There are 2 samples each having 3
(beam width) predicted sequence.
The second level of lod stands for: The lengths of the first sample's
3 predicted sequences are 12, 12, 16; The lengths of the second sample's
3 predicted sequences are 14, 13, 15.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
ids(Variable): The LoDTensorArray variable containing the selected ids
of all steps. Each LoDTensor in it has int64 data type and 2 level
lod which can be used to get the search paths.
scores(Variable): The LodTensorArray variable containing the accumulated
scores corresponding to selected ids of all steps. It has the same size
as ``ids`` . Each LoDTensor in it has the same shape and lod as the
counterpart in ``ids`` , and has a float32 data type.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
tuple: The tuple contains two LodTensor variables. The two LodTensor, \
containing the full sequences of ids and the correspongding accumulated \
scores, have the same shape flattened to 1D and have the same 2 level \
lod. The lod can be used to get how many predicted sequences each sample \
has and how many ids each predicted sequence has.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `ids` and `scores` are LodTensorArray variables reserving
# the selected ids and scores of all steps
ids = fluid.layers.create_array(dtype='int64')
scores = fluid.layers.create_array(dtype='float32')
finished_ids, finished_scores = fluid.layers.beam_search_decode(
ids, scores, beam_size=5, end_id=0)
"""
helper = LayerHelper('beam_search_decode', **locals())
sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
helper.append_op(
type="beam_search_decode",
inputs={"Ids": ids,
"Scores": scores},
outputs={
"SentenceIds": sentence_ids,
"SentenceScores": sentence_scores
},
attrs={"beam_size": beam_size,
"end_id": end_id})
return sentence_ids, sentence_scores
def lstm_unit(x_t,
hidden_t_prev,
cell_t_prev,
forget_bias=0.0,
param_attr=None,
bias_attr=None,
name=None):
"""
Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for
one time step, whose implementation is based on calculations described in `RECURRENT
NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_ .
We add forget_bias to the biases of the forget gate in order to
reduce the scale of forgetting. The formula is as follows:
.. math::
i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})
f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)
c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})
o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})
h_{t} & = o_{t} tanh (c_{t})
:math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step;
:math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` ,
representing the output of from previous time step.
:math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate
and hidden calculation.
Args:
x_t(Variable): A 2D Tensor representing the input of current time step.
Its shape should be :math:`[N, M]` , where :math:`N` stands for batch
size, :math:`M` for the feature size of input. The data type should
be float32 or float64.
hidden_t_prev(Variable): A 2D Tensor representing the hidden value from
previous step. Its shape should be :math:`[N, D]` , where :math:`N`
stands for batch size, :math:`D` for the hidden size. The data type
should be same as ``x_t`` .
cell_t_prev(Variable): A 2D Tensor representing the cell value from
previous step. It has the same shape and data type with ``hidden_t_prev`` .
forget_bias (float, optional): :math:`forget\\_bias` added to the biases
of the forget gate. Default 0.
param_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
bias_attr (ParamAttr, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
See usage for details in :ref:`api_fluid_ParamAttr` .
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
tuple: The tuple contains two Tensor variables with the same shape and \
data type with ``hidden_t_prev`` , representing the hidden value and \
cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \
the formula.
Raises:
ValueError: Rank of x_t must be 2.
ValueError: Rank of hidden_t_prev must be 2.
ValueError: Rank of cell_t_prev must be 2.
ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same.
ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim, hidden_dim = 128, 64, 512
data = fluid.data(name='step_data', shape=[None], dtype='int64')
x = fluid.embedding(input=data, size=[dict_dim, emb_dim])
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, hidden_dim], dtype='float32')
hidden = fluid.layers.lstm_unit(
x_t=x,
hidden_t_prev=pre_hidden,
cell_t_prev=pre_cell)
"""
helper = LayerHelper('lstm_unit', **locals())
if len(x_t.shape) != 2:
raise ValueError("Rank of x_t must be 2.")
if len(hidden_t_prev.shape) != 2:
raise ValueError("Rank of hidden_t_prev must be 2.")
if len(cell_t_prev.shape) != 2:
raise ValueError("Rank of cell_t_prev must be 2.")
if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
0] != cell_t_prev.shape[0]:
raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
"cell_t_prev must be the same.")
if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
raise ValueError("The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same.")
if bias_attr is None:
bias_attr = ParamAttr()
size = cell_t_prev.shape[1]
concat_out = nn.concat(input=[x_t, hidden_t_prev], axis=1)
fc_out = nn.fc(input=concat_out,
size=4 * size,
param_attr=param_attr,
bias_attr=bias_attr)
dtype = x_t.dtype
c = helper.create_variable_for_type_inference(dtype)
h = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='lstm_unit',
inputs={"X": fc_out,
"C_prev": cell_t_prev},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
return h, c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .layer_function_generator import templatedoc
from ..framework import Variable, in_dygraph_mode
from ..layer_helper import LayerHelper
__all__ = [
'sequence_conv',
'sequence_softmax',
'sequence_pool',
'sequence_concat',
'sequence_first_step',
'sequence_last_step',
'sequence_slice',
'sequence_expand',
'sequence_expand_as',
'sequence_pad',
'sequence_unpad',
'sequence_reshape',
'sequence_scatter',
'sequence_enumerate',
'sequence_mask',
'sequence_reverse',
]
@templatedoc()
def sequence_conv(input,
num_filters,
filter_size=3,
filter_stride=1,
padding=True,
padding_start=None,
bias_attr=None,
param_attr=None,
act=None,
name=None):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ).
This operator receives input sequences with variable length and other convolutional
configuration parameters(num_filters, filter_size) to apply the convolution operation.
It fills all-zero padding data on both sides of the sequence by default to ensure that
the output is the same length as the input. You can customize the padding behavior by
configuring the parameter :attr:`padding\_start` .
**Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.
.. code-block:: text
Here we will illustrate the details of the padding operation:
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2.
input.data = [[1, 1],
[2, 2],
[3, 3],
[4, 4]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
* Case1:
If padding_start is -1 and filter_size is 3.
The length of padding data is calculated as follows:
up_pad_len = max(0, -padding_start) = 1
down_pad_len = max(0, filter_size + padding_start - 1) = 1
The output of the input sequence after padding is:
data_aftet_padding = [[0, 0, 1, 1, 2, 2],
[1, 1, 2, 2, 3, 3],
[2, 2, 3, 3, 0, 0],
[0, 0, 4, 4, 0, 0]]
It will be multiplied by the filter weight to get the final output.
Assume num_filters = 3
output.data = [[ 0.3234, -0.2334, 0.7433],
[ 0.5646, 0.9464, -0.1223],
[-0.1343, 0.5653, 0.4555],
[ 0.9954, -0.1234, -0.1234]]
output.shape = [4, 3] # 3 = num_filters
output.lod = [[0, 3, 4]] # Remain the same
Args:
input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch
and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or
float64.
num_filters (int): the number of filters.
filter_size (int): the height of filter. Specified filter width is not supported, the width is
hidden_size by default. Default: 3.
filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
future. Currently, it will always pad input to make sure the length of the output is
the same as input whether :attr:`padding` is set true or false. Because the length of
input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
result to not be computed correctly. These padding data will not be trainable or updated
while trainnig. Default: True.
padding_start (int): It is used to indicate the start index for padding the input
sequence, which can be negative. The negative number means to pad
:attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
The positive number means to skip :attr:`padding_start` time-steps of each instance,
and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
at the end of the sequence to ensure that the output is the same length as the input.
If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
is padded at the end of each input sequence. Default: None.
bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_variable_for_type_inference(dtype)
if padding_start is None:
padding_start = -int(filter_size // 2)
helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': [filter_param],
},
outputs={"Out": pre_bias},
attrs={
'contextStride': filter_stride,
'contextStart': padding_start,
'contextLength': filter_size,
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
def sequence_softmax(input, use_cudnn=False, name=None):
"""
**Note**:
**The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax`
A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence.
The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N`
is the sum of the length of all sequences. Recommended usage: :math:`[N]`.
For i-th sequence in a mini-batch:
.. math::
Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}
For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order),
the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]],
then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`,
and :math:`N` turns out to be 15.
.. code-block:: text
*Case 1:
Given:
input.data = [0.7, 1, 0.6,
1.5, 1.1,
1.2, 0.2, 0.6, 1.9,
3.1,
2.5, 0.8,
0.1, 2.4, 1.3]
input.lod = [[0, 3, 5, 9, 10, 12, 15]]
then:
output.data = [0.30724832, 0.41474187, 0.2780098,
0.59868765, 0.40131235,
0.2544242, 0.09359743, 0.13963096, 0.5123474,
1.,
0.84553474, 0.15446526,
0.06995796, 0.69777346, 0.23226859]
output.lod = [[0, 3, 5, 9, 10, 12, 15]]
Args:
input (Variable):A LoDTensor with shape of :math:`[N, 1]` or :math:`[N]`, Recommended usage: :math:`[N]`.
Supported data types: float32, float64.
use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle
library is installed and GPU is used for training or reasoning. Default: False.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: A LoD-Tensor which has the same shape and data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_sequence_softmax_1 = fluid.layers.sequence_softmax(input=x)
y = fluid.data(name='y', shape=[7],
dtype='float32', lod_level=1)
x_sequence_softmax_2 = fluid.layers.sequence_softmax(input=y)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_softmax",
inputs={"X": input},
outputs={"Out": softmax_out},
attrs={"use_cudnn": use_cudnn})
return softmax_out
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ).
This operator only supports LoDTensor as input. It will apply specified pooling
operation on the input LoDTensor. It pools features of all time-steps of each
sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters,
such as sum, average, sqrt, etc.
It supports six pool_type:
- average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
- sum: :math:`Out[i] = \sum_jX_{ij}`
- sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
- max: :math:`Out[i] = max(X_i)`
- last: :math:`Out[i] = X_{N_i}`
- first: :math:`Out[i]` = X_0
where :math:`N_i` is the length of i-th input sequence.
.. code-block:: text
Case 1:
input is a 1-level LoDTensor and pad_value = 0.0:
input.lod = [[0, 2, 5, 7, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is LoDTensor:
out.shape = [4, 1]
with condition out.shape[0] == len(x.lod[-1]) == 4
for different pool_type:
average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2
sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1.
sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2)
max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.)
last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)
and all above [0.0] at last of out.data is padding data.
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
where out.shape[0] == len(x.lod[-1]) == 5
sum: out.data = [[1.], [5.], [4.], [0.0], [12.]]
where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1.
Args:
input (variable): LoDTensor with lod_level no more than 2. The data type should be float32.
pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first.
is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is
created to record the index information corresponding to the maximum value, which is used for backward
gradient calculation in the training phase. Default: False.
pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0
Returns:
Variable: LoDTensor after pooling with data type float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
max_index = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_pool",
inputs={"X": input},
outputs={"Out": pool_out,
"MaxIndex": max_index},
attrs={
"pooltype": pool_type.upper(),
"is_test": is_test,
"pad_value": pad_value
})
# when pool_type is max, variable max_index is initialized,
# so we stop the gradient explicitly here
if pool_type == 'max':
max_index.stop_gradient = True
return pool_out
@templatedoc()
def sequence_concat(input, name=None):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ).
This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information,
and outputs the concatenated LoDTensor.
.. code-block:: text
input is a list of LoDTensor:
input = [x1, x2]
where:
x1.lod = [[0, 3, 5]]
x1.data = [[1], [2], [3], [4], [5]]
x1.shape = [5, 1]
x2.lod = [[0, 2, 4]]
x2.data = [[6], [7], [8], [9]]
x2.shape = [4, 1]
and should satisfy: len(x1.lod[0]) == len(x2.lod[0])
output is LoDTensor:
out.lod = [[0, 3+2, 5+4]]
out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]]
out.shape = [9, 1]
Args:
input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same.
The data type can be float32, float64 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: Output the concatenated LoDTensor. The data type is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1)
out = fluid.layers.sequence_concat(input=[x, y])
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
return out
def sequence_first_step(input):
"""
This operator only supports LoDTensor as input. Given the input LoDTensor, it will
select first time-step feature of each sequence as output.
.. code-block:: text
Case 1:
input is 1-level LoDTensor:
input.lod = [[0, 2, 5, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is a LoDTensor:
out.shape = [3, 1]
out.shape[0] == len(x.lod[-1]) == 3
out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is a LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
out.shape[0] == len(x.lod[-1]) == 5
out.data = [[1.], [3.], [4.], [0.0], [6.]]
where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)
Args:
input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.
Returns:
Variable: LoDTensor consist of the sequence's first step vector. The data type is float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
return sequence_pool(input=input, pool_type="first")
def sequence_last_step(input):
"""
This operator only supports LoDTensor as input. Given the input LoDTensor, it will
select last time-step feature of each sequence as output.
.. code-block:: text
Case 1:
input is 1-level LoDTensor:
input.lod = [[0, 2, 5, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
output is a LoDTensor:
out.shape = [3, 1]
out.shape[0] == len(x.lod[-1]) == 3
out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
Case 2:
input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
where 0 means empty sequence.
The first sequence contains 2 subsequence with length info [1, 2];
The last sequence contains 3 subsequence with length info [1, 0, 3].
input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
input.shape = [7, 1]
It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
output is a LoDTensor:
out.shape= [5, 1]
out.lod = [[0, 2, 2, 5]]
out.shape[0] == len(x.lod[-1]) == 5
out.data = [[1.], [2.], [4.], [0.0], [1.]]
where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.)
Args:
input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.
Returns:
Variable: LoDTensor consist of the sequence's last step vector. The data type is float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
return sequence_pool(input=input, pool_type="last")
def sequence_slice(input, offset, length, name=None):
"""
**Sequence Slice Layer**
The layer crops a subsequence from given sequence with given start
offset and subsequence length.
It only supports sequence data (LoDTensor with lod_level equal to 1).
.. code-block:: text
- Case:
Given the input Variable **input**:
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.lod = [[3, 2]],
input.dims = (5, 2),
with offset.data = [[0], [1]] and length.data = [[2], [1]],
the output Variable will be
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.lod = [[2, 1]],
out.dims = (3, 2).
Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
Args:
input(Variable): LoDTensor, The input Variable which consists of the complete
sequences.The data type is float32 or float64.
offset(Variable): LoDTensor, The offset to slice each sequence.The data
type is int32 or int64.
length(Variable): LoDTensor, The length of each subsequence.The data
type is int32 or int64.
name(str|None): The default value is None. Normally there is no need
for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Variable: The output subsequences.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
seqs = fluid.data(name='x', shape=[10, 5],
dtype='float32', lod_level=1)
offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
offset.stop_gradient = True
length.stop_gradient = True
helper.append_op(
type="sequence_slice",
inputs={"X": input,
"Offset": offset,
"Length": length},
outputs={"Out": out})
return out
def sequence_expand(x, y, ref_level=-1, name=None):
"""Sequence Expand Layer. This layer will expand the input variable ``x`` \
according to specified level ``ref_level`` lod of ``y``. Please note that \
the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \
the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \
of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \
be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \
When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand works:
.. code-block:: text
Case 1
Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d].
Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2].
Input x is a 1-level LoDTensor:
x.lod = [[2, 2]] #lod based on length may be easier to understand
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
input y is a LoDTensor:
y.lod = [[2, 2], #the 0th level lod, according to this level
[3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level
ref_level: 0
then output is a 1-level LoDTensor out:
out.lod = [[2, 2, 2, 2]] #lod based on offfset
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
Case 2
Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c].
It's obvious that the lod info of expanded sequences is [2, 0, 3].
x is a Tensor:
x.data = [[a], [b], [c]]
x.dims = [3, 1]
y is a LoDTensor:
y.lod = [[2, 0, 3]]
ref_level: -1
then output is a 1-level LodTensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor, with the \
dims ``[M, K]``. The lod level is at most 1. The data type should be \
float32, float64, int8, int32 or int64.
y (Variable): The input variable which is a LoDTensor, the lod level is \
at least 1.
ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \
refer the last level of lod.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \
``N`` depends on the lod info of ``x`` and ``y``. \
The data type is same as input.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.data(name='y', shape=[8, 1],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 2, 4][0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 1 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 2, 4, 6, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 2 1 2 3 4 3 4]
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp},
attrs={'ref_level': ref_level})
return tmp
def sequence_expand_as(x, y, name=None):
"""Sequence Expand As Layer. This OP will expand the input variable ``x`` \
according to the zeroth level lod of ``y``. Current implementation requires \
the level number of ``y``'s lod must be 1, and the first dimension of \
``x`` should be equal to the size of ``y``'s zeroth level lod, thus \
the expanded LodTensor has the same lod info as ``y``. The expanded result \
has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered.
Please note that the input ``x`` should be LodTensor or Tensor, \
and input ``y`` must be LodTensor.
Following examples will explain how sequence_expand_as works:
.. code-block:: text
Case 1:
Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d].
It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8].
Given a 1-level LodTensor ``x``:
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
and input ``y``
y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand
then we get 1-level LoDTensor out:
Out.lod = [[0, 3, 6, 7, 8]] #based on offset
Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
Out.dims = [8, 1]
Case 2:
Given a common Tensor ``x``:
x.data = [[a, b], [c, d], [e, f]]
x.dims = [3, 2]
and input ``y``:
y.lod = [[0, 2, 3, 6]]
then we get a 1-level LoDTensor:
out.lod = [[0, 2, 3, 6]]
out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
out.dims = [6, 2]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor, with the \
dims ``[M, K]``. The data type should be float32, float64, int8, int32 \
or int64.
y (Variable): The input variable which is a LoDTensor with 1-level lod.
name (str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \
``N`` depends on the lod of ``y``, and the lod level must be 1. \
The data type is same as input.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
x = fluid.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y)
exe = fluid.Executor(fluid.CPUPlace())
place = fluid.CPUPlace()
np_data = np.array([[1], [2], [3], [4]]).astype('float32')
x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
print(x_lod_tensor)
#lod: [[0, 2, 4]]
# dim: 4, 1
# layout: NCHW
# dtype: float
# data: [1 2 3 4]
np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place)
print(y_lod_tensor)
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: int64_t
# data: [0 0 1 0 1 1 1 0]
out_main = exe.run(fluid.default_main_program(),
feed={'x': x_lod_tensor, 'y': y_lod_tensor},
fetch_list=[out], return_numpy=False)
print(out_main[0])
#lod: [[0, 3, 6, 7, 8]]
# dim: 8, 1
# layout: NCHW
# dtype: float
# data: [1 1 1 2 2 2 3 4]
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand_as',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp})
return tmp
def sequence_pad(x, pad_value, maxlen=None, name=None):
"""
This layer padding the sequences in a same batch to a common length (according \
to ``maxlen``). The padding value is defined by ``pad_value``, and will be \
appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \
the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \
the length information of input sequences. For removing paddding data (unpadding \
operation), See :ref:`api_fluid_layers_sequence_unpad` .
Please note that the input ``x`` should be LodTensor.
.. code-block:: text
Case 1:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a],[b],[c],[d],[e]]
pad_value:
pad_value.data = [0]
maxlen = 4
the output tuple (Out, Length):
Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]]
Length.data = [2, 3] #Original sequences length
Case 2:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [0]
defualt maxlen = None, (the virtual value is 3, according to the shape of x)
the output tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Case 3:
Given input 1-level LoDTensor x:
x.lod = [[0, 2, 5]]
x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
pad_value:
pad_value.data = [p1,p2]
defualt maxlen = None, (the virtual value is 3)
get tuple (Out, Length):
Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]]
Length.data = [2, 3]
Args:
x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \
size is described by lod infor (the number of sequnces ). \
The data type should be float32, float64, int8, int32 or int64.
pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \
with length ``K``. If it's a scalar, it will be automatically broadcasted \
to a Tensor. The data type should be as same as ``x``.
maxlen (int, optional): The length of padded sequences, None by default. \
When it is None, all sequences will be padded up to the length of the \
longest one among them; when it a certain positive value, it must be \
greater than the length of the longest original sequence.
name (str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \
``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \
sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \
The size of ``Length`` is equal to batch size, and the data type is int64.
Return Type: tuple
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
pad_value = fluid.layers.assign(
input=numpy.array([0.0], dtype=numpy.float32))
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length = helper.create_variable_for_type_inference(dtype)
pad_value.stop_gradient = True
length.stop_gradient = True
if maxlen is None:
maxlen = -1
helper.append_op(
type='sequence_pad',
inputs={'X': x,
'PadValue': pad_value},
outputs={'Out': out,
'Length': length},
attrs={'padded_length': maxlen})
return out, length
def sequence_unpad(x, length, name=None):
"""
**Note**:
**The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad`
The OP removes the padding data from the input based on the length information and returns a LoDTensor.
.. code-block:: text
Case 1:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
length.data = [2, 3, 4],
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[0, 2, 5, 9]]
Args:
x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2.
Supported data types: float32, float64, int32, int64.
length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor
has the same shape with the 0th dimension of the X . Supported data types: int64.
name(str|None): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
# pad data
x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
# unpad data
unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length.stop_gradient = True
helper.append_op(
type='sequence_unpad',
inputs={'X': x,
'Length': length},
outputs={'Out': out})
return out
def sequence_reshape(input, new_dim):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ).
This operator only supports LoDTensor as input. Given :attr:`new_dim` ,
it will compute new shape according to original length of each sequence,
original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor
containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor.
Please make sure that (original length * original dimensions) can be divided
by the :attr:`new_dim` with no remainder for each sequence.
.. code-block:: text
input is a LoDTensor:
input.lod = [[0, 2, 6]]
input.data = [[1, 2], [3, 4],
[5, 6], [7, 8],
[9, 10], [11, 12]]
input.shape = [6, 2]
set new_dim = 4
out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]
out.shape = [3, 4]
Args:
input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should
be int32, int64, float32 or float64.
new_dim (int): New dimension that the input LoDTensor is reshaped to.
Returns:
Variable: Reshaped LoDTensor according to new dimension. The data type is same as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype())
helper.append_op(
type='sequence_reshape',
inputs={'X': [input]},
outputs={'Out': [out]},
attrs={'new_dim': new_dim})
return out
def sequence_scatter(input, index, updates, name=None):
"""
**Note**:
**The index and updates parameters of the OP must be LoDTensor.**
Plus the updates data to the correspoding input according to the index.
The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] + updates[pos],
where instance_idx is the K sample corresponding to pos in batch.
The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found,
out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j].
For example, in the following example, the lod information for index is divided into three sequences. Among
them, because the element 0 can be found in the first interval of the index, it is updated with the value of
the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot
be found in the third interval of index, out[2][1] = input[2][1].
.. code-block:: text
*Case 1:
Given:
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
input.dims = [3, 6]
index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
index.lod = [[0, 3, 8, 12]]
updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
updates.lod = [[ 0, 3, 8, 12]]
Then:
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
out.dims = X.dims = [3, 6]
Args:
input (Variable): A Tensor with shape of :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64.
index (Variable): A LoDTensor contains index information. Its LoD level must be 1 and its data type must be int64.
updates (Variable): A LodTensor contains updates information. It has the same LoD level with the index and has the
same data type with the input. Supported data types: float32, float64, int32, int64.
name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information,
please refer to :ref:`api_guide_Name`
Returns:
Variable: A Tensor which has been updated. It has the same shape and data type with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.data( name="x", shape=[None, 3, 6], dtype='float32' )
index = fluid.data( name='index', shape=[12, 1], dtype='int64', lod_level=1)
updates = fluid.data( name='updates', shape=[12, 1], dtype='float32', lod_level=1)
output = fluid.layers.sequence_scatter(input, index, updates)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_scatter",
inputs={"X": input,
"Ids": index,
"Updates": updates},
outputs={"Out": out})
return out
def sequence_enumerate(input, win_size, pad_value=0, name=None):
"""
Generate a new sequence for the input index sequence with \
shape ``[d_1, win_size]``, which enumerates all the \
sub-sequences with length ``win_size`` of the input with \
shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation.
Please note that the `input` must be LodTensor.
.. code-block:: text
Input x:
x.lod = [[0, 3, 5]]
x.data = [[1], [2], [3], [4], [5]]
x.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
out.lod = [[0, 3, 5]]
out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
out.dims = [5, 2]
Args:
input (Variable): The input variable which is a index sequence, \
which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \
The data type should be float32, float64, int8, int32 or int64.
win_size (int): The window size for enumerating all sub-sequences.
pad_value (int, optional): The padding value, default 0.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The enumerate sequence variable which is a LoDTensor with \
shape ``[d_1, win_size]`` and 1-level lod info. \
The data type is same as ``input``.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True)
helper.append_op(
type='sequence_enumerate',
inputs={'X': input},
outputs={'Out': out},
attrs={'win_size': win_size,
'pad_value': pad_value})
return out
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
"""
**SequenceMask Layer**
This layer outputs a mask according to the input :code:`x` and
:code:`maxlen` with data type of :code:`dtype`.
Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
:code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
.. math::
y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))
.. code-block:: text
Case:
Consider input:
x = [3, 1, 1, 0] max_len = 4
then we get out:
mask = [[1, 1, 1, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 0]]
Args:
x (Variable): Input tensor of sequence_mask layer, \
whose elements are integers less than :code:`maxlen`. \
Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
is None, it would be replace with :math:`max(x)`.
dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \
``int64`` by default.
name(str, optional): For detailed information, please refer \
to :ref:`api_guide_Name`. Usually name is no need to set and \
None by default.
Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \
and data type of :code:`dtype`. The data type should be float32, float64, int8, \
int32 or int64.
Return Type: Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1)
mask = layers.sequence_mask(x=x)
"""
helper = LayerHelper('sequence_mask', **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
inputs = {'X': [x]}
attrs = {'out_dtype': out.dtype}
if maxlen is not None:
if isinstance(maxlen, Variable):
inputs['MaxLenTensor'] = maxlen
else:
attrs['maxlen'] = maxlen
helper.append_op(
type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)
out.stop_gradient = True
return out
@templatedoc()
def sequence_reverse(x, name=None):
"""
**Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ).
This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor.
Currently it only supports 1-level LoDTensor. This operator is very useful when building a
reverse :ref:`api_fluid_layers_DynamicRNN` network.
.. code-block:: text
input(x) is a LoDTensor:
x.lod = [[0, 2, 5]]
x.data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13,14, 15, 16],
[17,18, 19, 20]]
x.shape = [5, 4]
output LoDTensor with same shape and LoD info:
out.lod = [[0, 2, 5]]
out.data = [[5, 6, 7, 8],
[1, 2, 3, 4],
[17,18, 19, 20],
[13,14, 15, 16],
[9, 10, 11, 12]]
out.shape = [5, 4]
Args:
x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor.
The data type should be float32, float64, int8, int32 or int64.
name(str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Variable: LoDTensor reversed from input. The data type is same with input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
x_reversed = fluid.layers.sequence_reverse(x)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="sequence_reverse",
inputs={"X": x},
outputs={"Y": out},
attrs=dict())
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册