diff --git a/doc/design/refactor/session.md b/doc/design/refactor/session.md new file mode 100644 index 0000000000000000000000000000000000000000..1d9a26683c14f54e3b5fe41675cd03b5620646b8 --- /dev/null +++ b/doc/design/refactor/session.md @@ -0,0 +1,180 @@ +# Design Doc: Session + +## Abstract + +The *session* object encapsulates the environment in which the +computation graph is executed. + +We will have the *local* session and *remote* session, they offer the +same [interface](#interface). The local session encapsulates the local +runtime environment and the remote session encapsulates the cluster +runtime environment. + +The local runtime environment contains: + +1. computation devices (i.e., CPU, GPU) handles, and +1. the [scope](../scope.md) which holds all variables. + +The remote runtime environment contains: + +1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster, + and +1. the distributed [scope](../scope.md) in a cluster which holds all + variables. + +The user can create a remote session on Paddle Cloud and evaluate the +computation graph with it. In this way, the user can control the +remote computation resource in a cluster from his local computer. + + +## Background + +The current design has an implicit global session in which +`paddle.eval()` is executed. The pain point is: + +Since the user is not able to explicitly switch between runtime +environments, the user cannot run a topology in two independent +environments. + +For example, in reinforcement learning, the user may want to have a +stale model for inference and a fresh model for training, and only +replace the stale model with the fresh model periodically. + +Furthermore, we have no concept that encapsulates a remote environment +that executes a computation graph. + +We need the session object to address above issues. + + +## Session + +A session is an object that owns the runtime environment. All +computations are executed through `session.eval()`. + + +### Interface + +```python +eval( + targets, + feed_dict=None, +) +``` + +Evaluates the target Operations or Variables in `targets`. + +- *targets*: the evaluation targets. Can be a single Operation or + Variable, or a list with the Operations or Variables as + elements. The value returned by `eval()` has the same shape as the + `target` argument. + + The PaddlePaddle program is represented by + the [ProgramDesc](../design/program.md), `eval()` will infer the + ProgramDesc from the given targets and run the PaddlePaddle + program. Please + see + [this graph](./distributed_architecture.md#local-training-architecture) for + the detailed illustration for the local session + and + [this graph](./distributed_architecture.md#distributed-training-architecture) for + the detailed illustration for the remote session. + +- *feed_dict*: a dictionary that contains the tensors which override + the edges of the computation graph. + + feed_dict not only can provide the input data, it can override any + OP's input as well: + + ```python + a = pd.constant(2.0, name="a") + b = pd.variable(name="b") + c = pd.mul(a,b) + sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0 + ``` + +```python +close() +``` + +Closes the session and releases the scope that the session owns. + + +### Create a Local Session + +```python +session( + devices=None +) +``` + +Creates a new session. One session owns one global scope, so creating +multiple sessions will create different scopes. + +- *devices*: a single `string` or a list of `string` of device names, + the corresponding devices will be the computation devices for + `eval()`. If not specified, all available devices (e.g., all GPUs) + will be used. The user doesn't need to specify the CPU device since + it will be always used. Multiple sessions can use the same device. + + +#### Example + +```Python +a = paddle.constant(1.0) +b = paddle.constant(2.0) +c = a + b +sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"]) +sess.eval(c) +sess.close() +``` + +### Create a Remote Session + +```python +create_cloud_job( + name, + num_trainer, + mem_per_trainer, + gpu_per_trainer, + cpu_per_trainer, + num_ps, + mem_per_ps, + cpu_per_ps, +) +``` + +Creates a Paddle Cloud job. Fails if the job name exists. + +```python +get_cloud_job( + name +) +``` + +Gets a Paddle Cloud job. + +```python +remote_session( + job +) +``` + +- *job*: the Paddle Cloud job. + +#### Example + +```Python +reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud +image = reader.column(0) +label = reader.column(1) +fc1 = paddle.op.fc(image, size=256, act="sigmoid") +fc2 = paddle.op.fc(fc1, size=10, act="softmax") +cost = paddle.op.cross_entropy(fc2, label) +opt = paddle.optimizer.sgd(cost) + +job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1) +sess = paddle.remote_ession(job) +for i in range(1000): + sess.eval(opt) +sess.close() +```