# code was heavily based on https://github.com/cszn/KAIR # MIT License # Copyright (c) 2019 Kai Zhang """ Droppath, reimplement from https://github.com/yueatsprograms/Stochastic_Depth """ from itertools import repeat import collections.abc import math import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from .builder import GENERATORS def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse class DropPath(nn.Layer): """DropPath class""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def drop_path(self, inputs): """drop path op Args: input: tensor with arbitrary shape drop_prob: float number of drop path probability, default: 0.0 training: bool, if current mode is training, default: False Returns: output: output tensor after drop path """ # if prob is 0 or eval mode, return original input if self.drop_prob == 0. or not self.training: return inputs keep_prob = 1 - self.drop_prob keep_prob = paddle.to_tensor(keep_prob, dtype='float32') shape = ( inputs.shape[0], ) + (1, ) * (inputs.ndim - 1) # shape=(N, 1, 1, 1) random_tensor = keep_prob + paddle.rand(shape, dtype=inputs.dtype) random_tensor = random_tensor.floor() # mask output = inputs.divide( keep_prob ) * random_tensor # divide is to keep same output expectation return output def forward(self, inputs): return self.drop_path(inputs) to_2tuple = _ntuple(2) @paddle.jit.not_to_static def swapdim(x, dim1, dim2): a = list(range(len(x.shape))) a[dim1], a[dim2] = a[dim2], a[dim1] return x.transpose(a) class Identity(nn.Layer): """ Identity layer The output of this layer is the input without any change. Use this layer to avoid if condition in some forward methods """ def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Mlp(nn.Layer): def __init__(self, in_features, hidden_features, dropout): super(Mlp, self).__init__() w_attr_1, b_attr_1 = self._init_weights() self.fc1 = nn.Linear(in_features, hidden_features, weight_attr=w_attr_1, bias_attr=b_attr_1) w_attr_2, b_attr_2 = self._init_weights() self.fc2 = nn.Linear(hidden_features, in_features, weight_attr=w_attr_2, bias_attr=b_attr_2) self.act = nn.GELU() self.dropout = nn.Dropout(dropout) def _init_weights(self): weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierUniform()) bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal( std=1e-6)) return weight_attr, bias_attr def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class WindowAttention(nn.Layer): """Window based multihead attention, with relative position bias. Both shifted window and non-shifted window are supported. Args: dim (int): input dimension (channels) window_size (int): height and width of the window num_heads (int): number of attention heads qkv_bias (bool): if True, enable learnable bias to q,k,v, default: True qk_scale (float): override default qk scale head_dim**-0.5 if set, default: None attention_dropout (float): dropout of attention dropout (float): dropout for output """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attention_dropout=0., dropout=0.): super(WindowAttention, self).__init__() self.window_size = window_size self.num_heads = num_heads self.dim = dim self.dim_head = dim // num_heads self.scale = qk_scale or self.dim_head**-0.5 self.relative_position_bias_table = paddle.create_parameter( shape=[(2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads], dtype='float32', default_initializer=paddle.nn.initializer.TruncatedNormal(std=.02)) weight_attr, bias_attr = self._init_weights() # relative position index for each token inside window coords_h = paddle.arange(self.window_size[0]) coords_w = paddle.arange(self.window_size[1]) coords = paddle.stack(paddle.meshgrid([coords_h, coords_w ])) # [2, window_h, window_w] coords_flatten = paddle.flatten(coords, 1) # [2, window_h * window_w] # 2, window_h * window_w, window_h * window_h relative_coords = coords_flatten.unsqueeze( 2) - coords_flatten.unsqueeze(1) # winwod_h*window_w, window_h*window_w, 2 relative_coords = relative_coords.transpose([1, 2, 0]) relative_coords[:, :, 0] += self.window_size[0] - 1 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 # [window_size * window_size, window_size*window_size] relative_position_index = relative_coords.sum(-1) self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, weight_attr=weight_attr, bias_attr=bias_attr if qkv_bias else False) self.attn_dropout = nn.Dropout(attention_dropout) self.proj = nn.Linear(dim, dim, weight_attr=weight_attr, bias_attr=bias_attr) self.proj_dropout = nn.Dropout(dropout) self.softmax = nn.Softmax(axis=-1) def transpose_multihead(self, x): tensor_shape = list(x.shape[:-1]) new_shape = tensor_shape + [self.num_heads, self.dim_head] x = x.reshape(new_shape) x = x.transpose([0, 2, 1, 3]) return x def get_relative_pos_bias_from_pos_index(self): # relative_position_bias_table is a ParamBase object # https://github.com/PaddlePaddle/Paddle/blob/067f558c59b34dd6d8626aad73e9943cf7f5960f/python/paddle/fluid/framework.py#L5727 table = self.relative_position_bias_table # N x num_heads # index is a tensor index = self.relative_position_index.reshape( [-1]) # window_h*window_w * window_h*window_w # NOTE: paddle does NOT support indexing Tensor by a Tensor relative_position_bias = paddle.index_select(x=table, index=index) return relative_position_bias def forward(self, x, mask=None): qkv = self.qkv(x).chunk(3, axis=-1) q, k, v = map(self.transpose_multihead, qkv) q = q * self.scale attn = paddle.matmul(q, k, transpose_y=True) relative_position_bias = self.get_relative_pos_bias_from_pos_index() relative_position_bias = relative_position_bias.reshape([ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 ]) # nH, window_h*window_w, window_h*window_w relative_position_bias = relative_position_bias.transpose([2, 0, 1]) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.reshape( [x.shape[0] // nW, nW, self.num_heads, x.shape[1], x.shape[1]]) attn += mask.unsqueeze(1).unsqueeze(0) attn = attn.reshape([-1, self.num_heads, x.shape[1], x.shape[1]]) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_dropout(attn) z = paddle.matmul(attn, v) z = z.transpose([0, 2, 1, 3]) tensor_shape = list(z.shape[:-2]) new_shape = tensor_shape + [self.dim] z = z.reshape(new_shape) z = self.proj(z) z = self.proj_dropout(z) return z def _init_weights(self): weight_attr = paddle.ParamAttr( initializer=nn.initializer.TruncatedNormal(std=.02)) bias_attr = paddle.ParamAttr(initializer=nn.initializer.Constant(0)) return weight_attr, bias_attr def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 flops += N * self.dim * 3 * self.dim flops += self.num_heads * N * (self.dim // self.num_heads) * N flops += self.num_heads * N * N * (self.dim // self.num_heads) flops += N * self.dim * self.dim return flops def windows_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.reshape( [B, H // window_size, window_size, W // window_size, window_size, C]) windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape([-1, window_size, window_size, C]) return windows def windows_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.reshape( [B, H // window_size, W // window_size, window_size, window_size, -1]) x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, H, W, -1]) return x class SwinTransformerBlock(nn.Layer): """Swin transformer block Contains window multi head self attention, droppath, mlp, norm and residual. Attributes: dim: int, input dimension (channels) input_resolution: int, input resoultion num_heads: int, number of attention heads windos_size: int, window size, default: 7 shift_size: int, shift size for SW-MSA, default: 0 mlp_ratio: float, ratio of mlp hidden dim and input embedding dim, default: 4. qkv_bias: bool, if True, enable learnable bias to q,k,v, default: True qk_scale: float, override default qk scale head_dim**-0.5 if set, default: None dropout: float, dropout for output, default: 0. attention_dropout: float, dropout of attention, default: 0. droppath: float, drop path rate, default: 0. """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, dropout=0., attention_dropout=0., droppath=0.): super(SwinTransformerBlock, self).__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: self.shift_size = 0 self.window_size = min(self.input_resolution) self.norm1 = nn.LayerNorm(dim) self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout, dropout=dropout) self.drop_path = DropPath(droppath) if droppath > 0. else Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), dropout=dropout) attn_mask = self.calculate_mask(self.input_resolution) self.register_buffer("attn_mask", attn_mask) def calculate_mask(self, x_size): if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = x_size img_mask = paddle.zeros((1, H, W, 1)) h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = windows_partition( img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.reshape( [-1, self.window_size * self.window_size]) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) huns = -100.0 * paddle.ones_like(attn_mask) attn_mask = huns * (attn_mask != 0).astype("float32") return attn_mask else: return None def forward(self, x, x_size): H, W = x_size B, L, C = x.shape shortcut = x x = self.norm1(x) x = x.reshape([B, H, W, C]) # cyclic shift if self.shift_size > 0: shifted_x = paddle.roll(x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2)) else: shifted_x = x # partition windows x_windows = windows_partition(shifted_x, self.window_size) x_windows = x_windows.reshape( [-1, self.window_size * self.window_size, C]) # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size if self.input_resolution == x_size: attn_windows = self.attn(x_windows, mask=self.attn_mask) else: attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size)) # merge windows attn_windows = attn_windows.reshape( [-1, self.window_size, self.window_size, C]) shifted_x = windows_reverse(attn_windows, self.window_size, H, W) # reverse cyclic shift if self.shift_size > 0: x = paddle.roll(shifted_x, shifts=(self.shift_size, self.shift_size), axis=(1, 2)) else: x = shifted_x x = x.reshape([B, H * W, C]) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Layer): """ Patch Merging class Merge multiple patch into one path and keep the out dim. Spefically, merge adjacent 2x2 patches(dim=C) into 1 patch. The concat dim 4*C is rescaled to 2*C Args: input_resolution (tuple | ints): the size of input dim: dimension of single patch reduction: nn.Linear which maps 4C to 2C dim norm: nn.LayerNorm, applied after linear layer. """ def __init__(self, input_resolution, dim): super(PatchMerging, self).__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False) self.norm = nn.LayerNorm(4 * dim) def forward(self, x): h, w = self.input_resolution b, _, c = x.shape x = x.reshape([b, h, w, c]) x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C] x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C] x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C] x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C] x = paddle.concat([x0, x1, x2, x3], -1) #[B, H/2, W/2, 4*C] x = x.reshape([b, -1, 4 * c]) # [B, H/2*W/2, 4*C] x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Layer): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. dropout (float, optional): Dropout rate. Default: 0.0 attention_dropout (float, optional): Attention dropout rate. Default: 0.0 droppath (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, dropout=0., attention_dropout=0., droppath=0., downsample=None): super(BasicLayer, self).__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.blocks = nn.LayerList() for i in range(depth): self.blocks.append( SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, dropout=dropout, attention_dropout=attention_dropout, droppath=droppath[i] if isinstance( droppath, list) else droppath)) if downsample is not None: self.downsample = downsample(input_resolution, dim=dim) else: self.downsample = None def forward(self, x, x_size): for block in self.blocks: x = block(x, x_size) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class RSTB(nn.Layer): """Residual Swin Transformer Block (RSTB). Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None img_size: Input image size. patch_size: Patch size. resi_connection: The convolutional block before residual connection. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., downsample=None, img_size=224, patch_size=4, resi_connection='1conv'): super(RSTB, self).__init__() self.dim = dim self.input_resolution = input_resolution self.residual_group = BasicLayer(dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, dropout=drop, attention_dropout=attn_drop, droppath=drop_path, downsample=downsample) if resi_connection == '1conv': self.conv = nn.Conv2D(dim, dim, 3, 1, 1) elif resi_connection == '3conv': # to save parameters and memory self.conv = nn.Sequential(nn.Conv2D(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2), nn.Conv2D(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2), nn.Conv2D(dim // 4, dim, 3, 1, 1)) self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) self.patch_unembed = PatchUnEmbed(img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) def forward(self, x, x_size): return self.patch_embed( self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x def flops(self): flops = 0 flops += self.residual_group.flops() H, W = self.input_resolution flops += H * W * self.dim * self.dim * 9 flops += self.patch_embed.flops() flops += self.patch_unembed.flops() return flops class PatchEmbed(nn.Layer): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Layer, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1] ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x = x.flatten(2).transpose([0, 2, 1]) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): flops = 0 H, W = self.img_size if self.norm is not None: flops += H * W * self.embed_dim return flops class PatchUnEmbed(nn.Layer): r""" Image to Patch Unembedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Layer, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1] ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim def forward(self, x, x_size): B, HW, C = x.shape x = x.transpose([0, 2, 1]).reshape([B, self.embed_dim, x_size[0], x_size[1]]) # B Ph*Pw C return x def flops(self): flops = 0 return flops class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2D(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2D(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) class UpsampleOneStep(nn.Sequential): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): self.num_feat = num_feat self.input_resolution = input_resolution m = [] m.append(nn.Conv2D(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) m.append(nn.PixelShuffle(scale)) super(UpsampleOneStep, self).__init__(*m) def flops(self): H, W = self.input_resolution flops = H * W * self.num_feat * 3 * 9 return flops @GENERATORS.register() class SwinIR(nn.Layer): r""" SwinIR A Pypaddle impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. Args: img_size (int | tuple(int)): Input image size. Default 64 patch_size (int | tuple(int)): Patch size. Default: 1 in_chans (int): Number of input image channels. Default: 3 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction img_range: Image range. 1. or 255. upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None resi_connection: The convolutional block before residual connection. '1conv'/'3conv' """ def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, upscale=2, img_range=1., upsampler='', resi_connection='1conv'): super(SwinIR, self).__init__() num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 self.img_range = img_range if in_chans == 3: rgb_mean = np.array([0.4488, 0.4371, 0.4040], dtype=np.float32) self.mean = paddle.Tensor(rgb_mean).reshape([1, 3, 1, 1]) else: self.mean = paddle.zeros([1., 1., 1., 1.], dtype=paddle.float32) self.upscale = upscale self.upsampler = upsampler self.window_size = window_size # 1. shallow feature extraction self.conv_first = nn.Conv2D(num_in_ch, embed_dim, 3, 1, 1) # 2. deep feature extraction self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = embed_dim self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # merge non-overlapping patches into image self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) # absolute position embedding if self.ape: self.absolute_pos_embed = paddle.nn.ParameterList([ paddle.create_parameter( shape=[1, num_patches, embed_dim], dtype='float32', default_initializer=paddle.nn.initializer.TruncatedNormal( std=.02)) ]) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build Residual Swin Transformer blocks (RSTB) self.layers = nn.LayerList() for i_layer in range(self.num_layers): layer = RSTB( dim=embed_dim, input_resolution=(patches_resolution[0], patches_resolution[1]), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer] ):sum(depths[:i_layer + 1])], # no impact on SR results downsample=None, img_size=img_size, patch_size=patch_size, resi_connection=resi_connection) self.layers.append(layer) self.norm = norm_layer(self.num_features) # build the last conv layer in deep feature extraction if resi_connection == '1conv': self.conv_after_body = nn.Conv2D(embed_dim, embed_dim, 3, 1, 1) elif resi_connection == '3conv': # to save parameters and memory self.conv_after_body = nn.Sequential( nn.Conv2D(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2), nn.Conv2D(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2), nn.Conv2D(embed_dim // 4, embed_dim, 3, 1, 1)) # 3, high quality image reconstruction ################################ if self.upsampler == 'pixelshuffle': # for classical SR self.conv_before_upsample = nn.Sequential( nn.Conv2D(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU()) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2D(num_feat, num_out_ch, 3, 1, 1) elif self.upsampler == 'pixelshuffledirect': # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep( upscale, embed_dim, num_out_ch, (patches_resolution[0], patches_resolution[1])) elif self.upsampler == 'nearest+conv': # for real-world SR (less artifacts) assert self.upscale == 4, 'only support x4 now.' self.conv_before_upsample = nn.Sequential( nn.Conv2D(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU()) self.conv_up1 = nn.Conv2D(num_feat, num_feat, 3, 1, 1) self.conv_up2 = nn.Conv2D(num_feat, num_feat, 3, 1, 1) self.conv_hr = nn.Conv2D(num_feat, num_feat, 3, 1, 1) self.conv_last = nn.Conv2D(num_feat, num_out_ch, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2) else: # for image denoising and JPEG compression artifact reduction self.conv_last = nn.Conv2D(embed_dim, num_out_ch, 3, 1, 1) def no_weight_decay(self): return {'absolute_pos_embed'} def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def check_image_size(self, x): _, _, h, w = x.shape mod_pad_h = (self.window_size - h % self.window_size) % self.window_size mod_pad_w = (self.window_size - w % self.window_size) % self.window_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') return x def forward_features(self, x): x_size = (x.shape[2], x.shape[3]) x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x, x_size) x = self.norm(x) # B L C x = self.patch_unembed(x, x_size) return x def forward(self, x): H, W = x.shape[2:] x = self.check_image_size(x) x = (x - self.mean) * self.img_range if self.upsampler == 'pixelshuffle': # for classical SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.conv_last(self.upsample(x)) elif self.upsampler == 'pixelshuffledirect': # for lightweight SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.upsample(x) elif self.upsampler == 'nearest+conv': # for real-world SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.lrelu( self.conv_up1( paddle.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) x = self.lrelu( self.conv_up2( paddle.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) x = self.conv_last(self.lrelu(self.conv_hr(x))) else: # for image denoising and JPEG compression artifact reduction x_first = self.conv_first(x) res = self.conv_after_body(self.forward_features(x_first)) + x_first x = x + self.conv_last(res) x = x / self.img_range + self.mean return x[:, :, :H * self.upscale, :W * self.upscale] def flops(self): flops = 0 H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() return flops