/* * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved. * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _LOS_SCHED_PRI_H #define _LOS_SCHED_PRI_H #include "los_sortlink_pri.h" #include "los_sys_pri.h" #include "los_hwi.h" #include "hal_timer.h" #ifdef LOSCFG_SCHED_DEBUG #include "los_stat_pri.h" #endif #include "los_stackinfo_pri.h" #include "los_futex_pri.h" #include "los_signal.h" #ifdef LOSCFG_KERNEL_CPUP #include "los_cpup_pri.h" #endif #ifdef LOSCFG_KERNEL_LITEIPC #include "hm_liteipc.h" #endif #ifdef __cplusplus #if __cplusplus extern "C" { #endif /* __cplusplus */ #endif /* __cplusplus */ #define OS_SCHED_MINI_PERIOD (OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND_MINI) ///< 1毫秒的时钟周期 #define OS_TICK_RESPONSE_PRECISION (UINT32)((OS_SCHED_MINI_PERIOD * 75) / 100) ///< 不明白为啥是 * 75 就精确了??? @note_thinking #define OS_SCHED_MAX_RESPONSE_TIME (UINT64)(((UINT64)-1) - 1U) extern UINT32 g_taskScheduled; #define OS_SCHEDULER_ACTIVE (g_taskScheduled & (1U << ArchCurrCpuid())) #define OS_SCHEDULER_ALL_ACTIVE (g_taskScheduled == LOSCFG_KERNEL_CPU_MASK) typedef BOOL (*SCHED_TL_FIND_FUNC)(UINTPTR, UINTPTR); //获取当前调度经历了多少个时间周期 STATIC INLINE UINT64 OsGetCurrSchedTimeCycle(VOID) { return HalClockGetCycles(); } typedef enum { INT_NO_RESCH = 0x0, /* no needs to schedule */ INT_PEND_RESCH = 0x1, /* pending schedule flag */ INT_PEND_TICK = 0x2, /* pending tick */ } SchedFlag; typedef struct { SortLinkAttribute taskSortLink; /* task sort link */ SortLinkAttribute swtmrSortLink; /* swtmr sort link */ UINT64 responseTime; /* Response time for current CPU tick interrupts */ UINT32 responseID; /* The response ID of the current CPU tick interrupt */ UINT32 idleTaskID; /* idle task id */ UINT32 taskLockCnt; /* task lock flag */ UINT32 swtmrTaskID; /* software timer task id */ UINT32 swtmrHandlerQueue; /* software timer timeout queue id */ UINT32 schedFlag; /* pending scheduler flag */ } SchedRunQue; extern SchedRunQue g_schedRunQue[LOSCFG_KERNEL_CORE_NUM]; STATIC INLINE SchedRunQue *OsSchedRunQue(VOID) { return &g_schedRunQue[ArchCurrCpuid()]; } STATIC INLINE SchedRunQue *OsSchedRunQueByID(UINT16 id) { return &g_schedRunQue[id]; } STATIC INLINE UINT32 OsSchedLockCountGet(VOID) { return OsSchedRunQue()->taskLockCnt; } STATIC INLINE VOID OsSchedLockSet(UINT32 count) { OsSchedRunQue()->taskLockCnt = count; } STATIC INLINE VOID OsSchedLock(VOID) { OsSchedRunQue()->taskLockCnt++; } STATIC INLINE VOID OsSchedUnlock(VOID) { OsSchedRunQue()->taskLockCnt--; } STATIC INLINE BOOL OsSchedUnlockResch(VOID) { SchedRunQue *rq = OsSchedRunQue(); if (rq->taskLockCnt > 0) { rq->taskLockCnt--; if ((rq->taskLockCnt == 0) && (rq->schedFlag & INT_PEND_RESCH) && OS_SCHEDULER_ACTIVE) { return TRUE; } } return FALSE; } STATIC INLINE BOOL OsSchedIsLock(VOID) { return (OsSchedRunQue()->taskLockCnt != 0); } /* Check if preemptable with counter flag */ STATIC INLINE BOOL OsPreemptable(VOID) { SchedRunQue *rq = OsSchedRunQue(); /* * Unlike OsPreemptableInSched, the int may be not disabled when OsPreemptable * is called, needs mannually disable interrupt, to prevent current task from * being migrated to another core, and get the wrong preeptable status. */ UINT32 intSave = LOS_IntLock(); BOOL preemptable = (rq->taskLockCnt == 0); if (!preemptable) { /* Set schedule flag if preemption is disabled */ rq->schedFlag |= INT_PEND_RESCH; } LOS_IntRestore(intSave); return preemptable; } STATIC INLINE BOOL OsPreemptableInSched(VOID) { BOOL preemptable = FALSE; SchedRunQue *rq = OsSchedRunQue(); #ifdef LOSCFG_KERNEL_SMP /* * For smp systems, schedule must hold the task spinlock, and this counter * will increase by 1 in that case. */ preemptable = (rq->taskLockCnt == 1); #else preemptable = (rq->taskLockCnt == 0); #endif if (!preemptable) { /* Set schedule flag if preemption is disabled */ rq->schedFlag |= INT_PEND_RESCH; } return preemptable; } STATIC INLINE UINT32 OsSchedGetRunQueIdle(VOID) { return OsSchedRunQue()->idleTaskID; } STATIC INLINE VOID OsSchedRunQuePendingSet(VOID) { OsSchedRunQue()->schedFlag |= INT_PEND_RESCH; } #ifdef LOSCFG_KERNEL_SMP STATIC INLINE VOID FindIdleRunQue(UINT16 *idleCpuID) { SchedRunQue *idleRq = OsSchedRunQueByID(0); UINT32 nodeNum = OsGetSortLinkNodeNum(&idleRq->taskSortLink) + OsGetSortLinkNodeNum(&idleRq->swtmrSortLink); UINT16 cpuID = 1; do { SchedRunQue *rq = OsSchedRunQueByID(cpuID); UINT32 temp = OsGetSortLinkNodeNum(&rq->taskSortLink) + OsGetSortLinkNodeNum(&rq->swtmrSortLink); if (nodeNum > temp) { *idleCpuID = cpuID; nodeNum = temp; } cpuID++; } while (cpuID < LOSCFG_KERNEL_CORE_NUM); } #endif STATIC INLINE VOID OsSchedAddTask2TimeList(SortLinkList *node, UINT64 startTime, UINT32 waitTicks) { UINT16 idleCpu = 0; #ifdef LOSCFG_KERNEL_SMP FindIdleRunQue(&idleCpu); #endif SchedRunQue *rq = OsSchedRunQueByID(idleCpu); UINT64 responseTime = startTime + (UINT64)waitTicks * OS_CYCLE_PER_TICK; OsAdd2SortLink(&rq->taskSortLink, node, responseTime, idleCpu); } STATIC INLINE UINT32 OsSchedSwtmrHandlerQueueGet(VOID) { return OsSchedRunQue()->swtmrHandlerQueue; } STATIC INLINE VOID OsSchedDeTaskFromTimeList(SortLinkList *node) { #ifdef LOSCFG_KERNEL_SMP SchedRunQue *rq = OsSchedRunQueByID(node->cpuid); #else SchedRunQue *rq = OsSchedRunQueByID(0); #endif OsDeleteFromSortLink(&rq->taskSortLink, node); } STATIC INLINE VOID OsSchedAddSwtmr2TimeList(SortLinkList *node, UINT64 startTime, UINT32 waitTicks) { UINT16 idleCpu = 0; #ifdef LOSCFG_KERNEL_SMP FindIdleRunQue(&idleCpu); #endif SchedRunQue *rq = OsSchedRunQueByID(idleCpu); UINT64 responseTime = startTime + (UINT64)waitTicks * OS_CYCLE_PER_TICK; OsAdd2SortLink(&rq->swtmrSortLink, node, responseTime, idleCpu); } STATIC INLINE VOID OsSchedDeSwtmrFromTimeList(SortLinkList *node) { #ifdef LOSCFG_KERNEL_SMP SchedRunQue *rq = OsSchedRunQueByID(node->cpuid); #else SchedRunQue *rq = OsSchedRunQueByID(0); #endif OsDeleteFromSortLink(&rq->swtmrSortLink, node); } VOID OsSchedRunQueIdleInit(UINT32 idleTaskID); VOID OsSchedRunQueSwtmrInit(UINT32 swtmrTaskID, UINT32 swtmrQueue); VOID OsSchedRunQueInit(VOID); BOOL OsSchedSwtmrTimeListFind(SCHED_TL_FIND_FUNC checkFunc, UINTPTR arg); /** * @ingroup los_sched * Define a usable task priority. * * Highest task priority. */ #define OS_TASK_PRIORITY_HIGHEST 0 /** * @ingroup los_sched * Define a usable task priority. * * Lowest task priority. */ #define OS_TASK_PRIORITY_LOWEST 31 /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is init. */ #define OS_TASK_STATUS_INIT 0x0001U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is ready. */ #define OS_TASK_STATUS_READY 0x0002U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is running. */ #define OS_TASK_STATUS_RUNNING 0x0004U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is suspended. */ #define OS_TASK_STATUS_SUSPENDED 0x0008U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is blocked. */ #define OS_TASK_STATUS_PENDING 0x0010U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is delayed. */ #define OS_TASK_STATUS_DELAY 0x0020U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The time for waiting for an event to occur expires. */ #define OS_TASK_STATUS_TIMEOUT 0x0040U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is pend for a period of time. */ #define OS_TASK_STATUS_PEND_TIME 0x0080U /** * @ingroup los_sched * Flag that indicates the task or task control block status. * * The task is exit. */ #define OS_TASK_STATUS_EXIT 0x0100U #define OS_TCB_NAME_LEN 32 typedef struct { VOID *stackPointer; /**< Task stack pointer | 内核栈指针位置(SP) */ UINT16 taskStatus; /**< Task status | 各种状态标签,可以拥有多种标签,按位标识 */ /* The scheduling */ UINT16 basePrio; UINT16 priority; /**< Task priority | 任务优先级[0:31],默认是31级 */ UINT16 policy; ///< 任务的调度方式(三种 .. LOS_SCHED_RR LOS_SCHED_FIFO .. ) UINT64 startTime; /**< The start time of each phase of task | 任务开始时间 */ UINT64 irqStartTime; /**< Interrupt start time | 任务中断开始时间 */ UINT32 irqUsedTime; /**< Interrupt consumption time | 任务中断消耗时间 */ UINT32 initTimeSlice; /**< Task init time slice | 任务初始的时间片 */ INT32 timeSlice; /**< Task remaining time slice | 任务剩余时间片 */ UINT32 waitTimes; /**< Task delay time, tick number | 设置任务调度延期时间 */ SortLinkList sortList; /**< Task sortlink node | 跟CPU捆绑的任务排序链表节点,上面挂的是就绪队列的下一个阶段,进入CPU要执行的任务队列 */ UINT32 stackSize; /**< Task stack size | 内核态栈大小,内存来自内核空间 */ UINTPTR topOfStack; /**< Task stack top | 内核态栈顶 bottom = top + size */ UINT32 taskID; /**< Task ID | 任务ID,任务池本质是一个大数组,ID就是数组的索引,默认 < 128 */ TSK_ENTRY_FUNC taskEntry; /**< Task entrance function | 任务执行入口地址 */ VOID *joinRetval; /**< pthread adaption | 用来存储join线程的入口地址 */ VOID *taskMux; /**< Task-held mutex | task在等哪把锁 */ VOID *taskEvent; /**< Task-held event | task在等哪个事件 */ UINTPTR args[4]; /**< Parameter, of which the maximum number is 4 | 入口函数的参数 例如 main (int argc,char *argv[]) */ CHAR taskName[OS_TCB_NAME_LEN]; /**< Task name | 任务的名称 */ LOS_DL_LIST pendList; /**< Task pend node | 如果任务阻塞时就通过它挂到各种阻塞情况的链表上,比如OsTaskWait时 */ LOS_DL_LIST threadList; /**< thread list | 挂到所属进程的线程链表上 */ UINT32 eventMask; /**< Event mask | 任务对哪些事件进行屏蔽 */ UINT32 eventMode; /**< Event mode | 事件三种模式(LOS_WAITMODE_AND,LOS_WAITMODE_OR,LOS_WAITMODE_CLR) */ UINT32 priBitMap; /**< BitMap for recording the change of task priority,the priority can not be greater than 31 | 任务在执行过程中优先级会经常变化,这个变量用来记录所有曾经变化过的优先级,例如 ..01001011 曾经有过 0,1,3,6 优先级 */ #ifdef LOSCFG_KERNEL_CPUP OsCpupBase taskCpup; /**< task cpu usage | CPU 使用统计 */ #endif INT32 errorNo; /**< Error Num | 错误序号 */ UINT32 signal; /**< Task signal | 任务信号类型,(SIGNAL_NONE,SIGNAL_KILL,SIGNAL_SUSPEND,SIGNAL_AFFI) */ sig_cb sig; ///< 信号控制块,用于异步通信,类似于 linux singal模块 #ifdef LOSCFG_KERNEL_SMP UINT16 currCpu; /**< CPU core number of this task is running on | 正在运行此任务的CPU内核号 */ UINT16 lastCpu; /**< CPU core number of this task is running on last time | 上次运行此任务的CPU内核号 */ UINT16 cpuAffiMask; /**< CPU affinity mask, support up to 16 cores | CPU亲和力掩码,最多支持16核,亲和力很重要,多核情况下尽量一个任务在一个CPU核上运行,提高效率 */ #ifdef LOSCFG_KERNEL_SMP_TASK_SYNC //多核情况下的任务同步开关,采用信号量实现 UINT32 syncSignal; /**< Synchronization for signal handling | 用于CPU之间同步信号量 */ #endif #ifdef LOSCFG_KERNEL_SMP_LOCKDEP //SMP死锁检测开关 LockDep lockDep; ///< 死锁依赖检测 #endif #endif #ifdef LOSCFG_SCHED_DEBUG //调试调度开关 SchedStat schedStat; /**< Schedule statistics | 调度统计 */ #endif #ifdef LOSCFG_KERNEL_VM UINTPTR archMmu; UINTPTR userArea; ///< 用户空间的堆区开始位置 UINTPTR userMapBase; ///< 用户空间的栈顶位置,内存来自用户空间,和topOfStack有本质的区别. UINT32 userMapSize; /**< user thread stack size ,real size : userMapSize + USER_STACK_MIN_SIZE | 用户栈大小 */ FutexNode futex; ///< 指明任务在等待哪把快锁,一次只等一锁,锁和任务的关系是(1:N)关系 #endif UINT32 processID; /**< Which belong process */ LOS_DL_LIST joinList; /**< join list | 联结链表,允许任务之间相互释放彼此 */ LOS_DL_LIST lockList; /**< Hold the lock list | 该链表上挂的都是已持有的锁 */ UINTPTR waitID; /**< Wait for the PID or GID of the child process | 等待子进程的PID或GID */ UINT16 waitFlag; /**< The type of child process that is waiting, belonging to a group or parent, a specific child process, or any child process | 任务在等待什么信息 ? (OS_TASK_WAIT_PROCESS | OS_TASK_WAIT_GID | OS_TASK_WAIT_LITEIPC ..) 往往用于被其他任务查看该任务在等待什么事件,如果事件到了就可以唤醒任务*/ #ifdef LOSCFG_KERNEL_LITEIPC //轻量级进程间通信开关 IpcTaskInfo *ipcTaskInfo; ///< 任务间通讯信息结构体 #endif #ifdef LOSCFG_KERNEL_PERF UINTPTR pc; ///< pc寄存器 UINTPTR fp; ///< fp寄存器 #endif } LosTaskCB; STATIC INLINE BOOL OsTaskIsRunning(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & OS_TASK_STATUS_RUNNING) != 0); } STATIC INLINE BOOL OsTaskIsReady(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & OS_TASK_STATUS_READY) != 0); } STATIC INLINE BOOL OsTaskIsInactive(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & (OS_TASK_STATUS_INIT | OS_TASK_STATUS_EXIT)) != 0); } STATIC INLINE BOOL OsTaskIsPending(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & OS_TASK_STATUS_PENDING) != 0); } STATIC INLINE BOOL OsTaskIsSuspended(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & OS_TASK_STATUS_SUSPENDED) != 0); } STATIC INLINE BOOL OsTaskIsBlocked(const LosTaskCB *taskCB) { return ((taskCB->taskStatus & (OS_TASK_STATUS_SUSPENDED | OS_TASK_STATUS_PENDING | OS_TASK_STATUS_DELAY)) != 0); } STATIC INLINE LosTaskCB *OsCurrTaskGet(VOID) { return (LosTaskCB *)ArchCurrTaskGet(); } STATIC INLINE VOID OsCurrTaskSet(LosTaskCB *task) { ArchCurrTaskSet(task); } STATIC INLINE VOID OsCurrUserTaskSet(UINTPTR thread) { ArchCurrUserTaskSet(thread); } STATIC INLINE VOID OsSchedIrqUpdateUsedTime(VOID) { LosTaskCB *runTask = OsCurrTaskGet(); runTask->irqUsedTime = OsGetCurrSchedTimeCycle() - runTask->irqStartTime;//获取时间差 } /// 获取中断开始时间 STATIC INLINE VOID OsSchedIrqStartTime(VOID) { LosTaskCB *runTask = OsCurrTaskGet(); runTask->irqStartTime = OsGetCurrSchedTimeCycle(); //获取当前时间 } /* * Schedule flag, one bit represents one core. * This flag is used to prevent kernel scheduling before OSStartToRun. */ #define OS_SCHEDULER_SET(cpuid) do { \ g_taskScheduled |= (1U << (cpuid)); \ } while (0); //清楚调度标识位,对应位设置为0 #define OS_SCHEDULER_CLR(cpuid) do { \ g_taskScheduled &= ~(1U << (cpuid)); \ } while (0); VOID OsSchedSetIdleTaskSchedParam(LosTaskCB *idleTask); VOID OsSchedResetSchedResponseTime(UINT64 responseTime); VOID OsSchedUpdateExpireTime(VOID); VOID OsSchedToUserReleaseLock(VOID); VOID OsSchedTaskDeQueue(LosTaskCB *taskCB); VOID OsSchedTaskEnQueue(LosTaskCB *taskCB); UINT32 OsSchedTaskWait(LOS_DL_LIST *list, UINT32 timeout, BOOL needSched); VOID OsSchedTaskWake(LosTaskCB *resumedTask); BOOL OsSchedModifyTaskSchedParam(LosTaskCB *taskCB, UINT16 policy, UINT16 priority); BOOL OsSchedModifyProcessSchedParam(UINT32 pid, UINT16 policy, UINT16 priority); VOID OsSchedSuspend(LosTaskCB *taskCB); BOOL OsSchedResume(LosTaskCB *taskCB); VOID OsSchedDelay(LosTaskCB *runTask, UINT32 tick); VOID OsSchedYield(VOID); VOID OsSchedTaskExit(LosTaskCB *taskCB); VOID OsSchedTick(VOID); UINT32 OsSchedInit(VOID); VOID OsSchedStart(VOID); /* * This function simply picks the next task and switches to it. * Current task needs to already be in the right state or the right * queues it needs to be in. */ VOID OsSchedResched(VOID); VOID OsSchedIrqEndCheckNeedSched(VOID); /* * This function inserts the runTask to the lock pending list based on the * task priority. */ LOS_DL_LIST *OsSchedLockPendFindPos(const LosTaskCB *runTask, LOS_DL_LIST *lockList); #ifdef LOSCFG_SCHED_TICK_DEBUG VOID OsSchedDebugRecordData(VOID); #endif UINT32 OsShellShowTickRespo(VOID); UINT32 OsShellShowSchedParam(VOID); #ifdef __cplusplus #if __cplusplus } #endif /* __cplusplus */ #endif /* __cplusplus */ #endif /* _LOS_SCHED_PRI_H */