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Abstract— An increasing number of robotic systems feature
multiple inertial measurement units (IMUs). Due to competing
objectives—either desired vicinity to the center of gravity
when used in controls, or an unobstructed field of view when
integrated in a sensor setup with an exteroceptive sensor for
ego-motion estimation—individual IMUs are often mounted at
considerable distance. As a result, they sense different acceler-
ations when the platform is subjected to rotational motions.
In this work, we derive a method for spatially calibrating
multiple IMUs in a single estimator based on the open-source
camera/IMU calibration toolbox kalibr. We further extend
the toolbox to determine IMU intrinsics, enabling accurate
calibration of low-cost IMUs. The results suggest that the
extended estimator is capable of precisely determining these
intrinsics and even of localizing individual accelerometer axes
inside a commercial grade IMU to millimeter precision.

I. INTRODUCTION

With the costs for inertial measurement units steadily
declining and the emergence of integrated visual/inertial
sensors, an increasing number of robotics platforms feature
multiple inertial measurement units. An example for such
a system is the Boston Dynamics quadrupedal platform [1]
equipped with a tactical grade IMU rigidly mounted to a
stereo camera setup and used for visual/inertial odometry
and with a navigation grade IMU positioned inside the body
of the robot. Another example is the quadrotor platform by
Shen et al. [2], which employs a low-cost IMU for low-level
controls in the autopilot and an additional, high-performance
IMU for visual/inertial motion estimation. These platforms
have in common that they employ a main IMU posi-
tioned and aligned in a way meaningful for locomotion (i.e.
mounted close the center of gravity and aligned with the
main axes of the platform) and a second, auxiliary IMU
mounted in the vicinity of some exteroceptive sensors in a
location with minimal obstruction by the platform itself. For
most platforms, these two locations will be vastly different.
In order to make sense of ego-motion estimates from the
auxiliary sensor suite for controls and locomotion, they will
have to be transformed to the coordinate frame of the main
IMU. To this end, an accurate estimate of the transformation
between the two coordinate frames is required.

While it is possible to estimate the transformation of
both IMUs with respect to the exteroceptive sensor and
subsequently chain them, little work presents on fusion of
measurements from multiple IMUs inside a single estimator.

1 All authors are with the ETH, the Swiss Federal Institute of Technology
Zurich, Autonomous Systems Lab (www.asl.ethz.ch), Leonhardstrasse
21, LEE, CH-8092 Zurich, Switzerland. {joern.rehder,
janosch.nikolic, timo.hinzmann}@mavt.ethz.ch,
rsiegwart@ethz.ch.

We suspect one of the reasons for this to lie in the fact
that angular accelerations are required to model accelerations
perceived in any location outside the accelerometer input
axes (IA)—a quantity that is often not measured directly.1

While it would be possible to derive an estimate of angular
acceleration from numerically differentiating angular veloc-
ity measurements perceived by the gyroscopes, we pursued
a different approach here: The well-established continuous-
time batch estimation framework presented by Furgale et al.
[5] fits a spline representing the evolution of the relative
orientation of two coordinate frames over time to a series
of orientation and angular velocity measurements. Assuming
that angular velocity varies smoothly, an estimate of angular
acceleration can be directly derived from this orientation
curve.

The same estimator enables further applications: High-
end IMUs often employ one integrated circuit (IC) per axis
for acceleration measurements rather than a single IC that
combines all axes on a single die. Individual axes may be
multiple centimeters apart, which violates the assumption
that they are subject to the same acceleration under general
motion. If unaccounted for, this introduces errors which are
sometimes referred to as the “size effect” in the navigation
literature [6]. Consequently, the offsets of individual axes
to the origin of the input reference axes (IRA) should be
considered for maximum calibration performance.

The contributions of this work are the following:
• We derive an estimator for simultaneous intrinsic and

extrinsic calibration of multiple IMUs with respect to
one or multiple exteroceptive sensors.

• We generalize this estimator to additionally determine
the location of individual accelerometer axes.

• We present a comprehensive experimental study demon-
strating precise intrinsic calibration and showing that it
is possible to locate individual accelerometer axes inside
a commercial grade IMU.

The approach was implemented as an extension to the
open-source camera/IMU calibration toolbox kalibr2 [7] and
will be released as an update to it.

II. RELATED WORK

This work is concerned with calibrating a sensor suite
comprising one or multiple IMUs and one or multiple extero-

1There exist different approaches for measuring angular accelerations, a
not so recent review of which is provided in [3]. More recently, consumer
grade MEMS angular acceleration sensors have been announced [4]. How-
ever, these devices are currently not widely employed.

2https://github.com/ethz-asl/kalibr
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TABLE I

Estimated Quantities

Estimation Approach Sα,ω Mα,ω Aω BrBA CBC ,BrBC dc fc, cc, kc bα,ω

Mirzaei [8], Kelly [9], [10] EKF • •∗ •

Fleps [11], Mair [12] cont.-time batch optimization • •∗ •

Furgale [7] cont.-time batch optimization • • •

Zachariah [13] SPKF • • • • •

Li [14] MSCKF • • • • • • •

Krebs [15] cont.-time batch optimization • • • • • •

Ours cont.-time batch optimization • • • • • • •

ceptive sensors. The goal of the calibration is to improve state
estimation results obtained from fusing measurements from
all sensors available. Accordingly, estimating the extrinsics
of the IMUs with respect to an exteroceptive sensor is an
integral part of the approach, and we will limit the review
of related work to approaches similar in scope.

Nevertheless, there exists a large body of work addressing
the problem of calibrating redundant IMUs for applications
where fusion with additional sensors is not a focus. Possible
starting points for further literature review in this direction
could be the work by Pittelkau [16], Hwangbo et al. [17],
and Nilsson et al. [18].

Mirzaei et al. [8] and Kelly et al. [9] proposed an ex-
tended Kalman filter (EKF)-based framework that estimated
the transformation between an IMU and a camera from a
calibration sequence recorded by moving the setup in front of
a visual target. Using a similar calibration procedure, Fleps
et al. [11] determined these quantities by means of batch
optimization. Their approach estimated a continuous trajec-
tory encoded as a spline rather than representing the motion
as a discrete sequence of states. Furgale et al. [7] pursued
a similar continuous-time approach, but additionally folded
the estimation of a temporal offset between camera and IMU
into the estimator—a parameter that had previously been es-
timated in a separate procedure ( [10], [12]). Krebs extended
the approach by IMU intrinsics [15]. Similarly, Zachariah et
al. [13] incorporated intrinsic parameters into a discrete-time
sigma-point Kalman filter (SPKF) estimation framework.
Recently, Li et al. [14] demonstrated the estimation of
camera/IMU extrinsics, a time delay and IMU intrinsics as
an integral part of an online state estimation framework using
a multi-state-constraint Kalman filter (MSCKF). In contrast
to other methods reviewed here, their approach uses natural
visual landmarks rather than a dedicated calibration pattern
and additionally estimates the camera intrinsic parameters
focal length fc, principle point cc and distortion parameters
kc.

Our approach is based on [7] and extends that method to
incorporate multiple IMUs into a single estimator. The same
formulation can be employed to determine the displacement
of individual accelerometer axes, arriving at a more complete
model even in sensor suites comprising only a single IMU.
Borrowing from [15], IMU intrisics were added to the

calibration parameters to improve results.
Table I summarizes these approaches using the notation

that will be introduced in Section III-D. Asterisks mark
approaches where temporal calibration is performed in a
separate, preceding step.

F−→B

F−→W

F−→A

F−→C

Arx

Ary

Arz

Fig. 1: Coordinate frame convention. F−→W denotes the world
reference frame, and F−→B and F−→A mark the input reference
axes (IRA) and the eccentric IMU frame respectively. A
camera was used as exteroceptive sensor, denoted here with
F−→C . F−→B , F−→C and F−→A are connected through a rigid
mechanical link. Gray boxes mark the locations of individual
accelerometer ICs, which are displaced with respect to F−→A

by individual lever arms Arx,y,z . For simplicity, we will
assume Arx = 0 in the following.

III. METHOD

A. Coordinate frame conventions

Fig. 1 visualizes the different coordinate frames used
in this work. The inertial frame F−→W is attached to the
calibration pattern. F−→B marks the body IRA, while F−→A and
F−→C denote the IMU frame and the frame of the exteroceptive
sensor respectively. F−→B , F−→C and F−→A are rigidly connected
through a mechanical link. We will estimate the time-varying
relative orientation and position of F−→B with respect to F−→W .

In order for the IRA to be well defined in practice, the
spatial offset to at least one axis of at least one IMU needs
to be fixated. This could be an arbitrary displacement, but
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for convenience, we choose to align the IRA with one IMU
when calibrating with multiple devices, and the x-axis of
the IRA with the accelerometer sensing the specific force in
x direction when calibrating for displacements of individual
axes (i.e. Arx = 0).

B. Accelerometer model

Here, we will derive the model of inertial measurements
used for calibration in the estimator.

Let W tWB(t) denote the time-varying vector from the
origin of coordinate frame F−→W to coordinate frame F−→B

expressed in F−→W . With this, the acceleration of the origin
of coordinate frame F−→B expressed in F−→W is given by
W ẗWB(t).

The measurements of an ideal accelerometer (i.e. the
specific force) at coordinate frame F−→B can be expressed
as

BaWB(t) = CBW (t)
(
W ẗWB(t)−W g

)
(1)

where CBW (t) denotes the time-varying direction cosine
matrix that transforms a vector from F−→W to F−→B , and W g
marks the gravitational force.

Now assume that we would like to model the acceleration
of a coordinate frame F−→A, rigidly attached to F−→B with
constant displacement BrBA. The temporal evolution of
the origin of this coordinate frame, expressed in F−→W , is
given by W tWA = W tWB(t) + CTBW (t)BrBA. Accordingly,
AaWA(t) is given by

AaWA(t) = CαAB(CBW (t)(W ẗWB(t)−W g)
+ bBω̇WB(t)c×BrBA
+ bBωWB(t)c2×BrBA)

(2)

where CαAB marks the rotation matrix relating F−→A and F−→B ,
BωWB(t) denotes the angular velocity of F−→W with respect
to F−→B and Bω̇WB(t) denotes the angular acceleration. The
operator b·c× denotes the skew-symmetric matrix expressing
the cross products.

In the most simplistic accelerometer model, we assume
that the accelerometer input axes (IA) are aligned with
F−→A and that the accelerometer measurements α(t) are only
affected by noise:

α(t) = AaWA(t) + bα(t) + να (3a)
ḃα(t) = νbα (3b)

where να and νbα are zero-mean, white Gaussian noise
processes of strength σ2

αI and σ2
bαI. In other words, the

accelerometer measurements are independently affected by
white noise να and a slowly varying random walk process
of diffusion σ2

bαI, bα(t).
This model is a good approximation for devices with

factory calibrated intrinsics, but may produce impaired cali-
bration results for low-cost, consumer grade inertial sensors
which exhibit significant axis misalignment and scale factor
errors. Hence, for these sensors, the model is augmented to
include misalignment and incorrect scales:

α(t) = SαMαAaWA(t) + bα(t) + να (4)

where Sα is a diagonal matrix comprising scaling effects and
Mα is a lower unitriangular matrix, with lower off-diagonal
elements corresponding to misalignment small angles.

Equation 5 can be extended to accommodate a design
trait common to many high-end IMUs: These often em-
ploy an individual sensor IC per measurement axis, and
there are physical limits on the proximity in which the
sensors can be mounted. Consequently, each axis is dis-
placed differently from the input reference axes (IRA). With
ω(t) := BωWB(t), ω̇(t) := Bω̇WB(t), the complete model
with individually displaced accelerometer axes amounts to

AaWA(t) =CαAB(CBW (t)(W ẗWB(t)−W g)
+diag(bω̇(t)c×Rα + bω(t)c2×Rα)),

(5)

where diag(·) extracts the N×1 vector from the diagonal of
a matrix and Rα is composed of the lever arms of individual
accelerometers (identified by the subscripts) according to

Rα =
[
BrBAx BrBAy BrBAz

]
. (6)

C. Gyroscope model

Analogously, given the angular velocity BωWB governing
the time-varying change in orientation between F−→B and F−→W

expressed in F−→B , the angular velocity expressed in F−→A is
given as

AωWB(t) = CωABBωWB(t) (7)

The rationale behind estimating CωAB and CαAB separately
lies in sensor imperfections: The gyroscopes may not be
perfectly aligned with the accelerometers, and estimating a
single CAB would in turn be a source of deterministic errors
in the model.

Again, a properly factory calibrated gyroscope can be
modelled as

$(t) = AωWB(t) + bω(t) + νω (8a)
ḃω(t) = νbω (8b)

where νω and νbω are zero-mean, white Gaussian noise
processes of strength σ2

ωI and σ2
bωI, i.e. the gyroscopes are

independently affected by white noise and a random walk
process, analogously to the accelerometers.

For consumer grade devices, the influence of axis mis-
alignment and incorrect measurement scaling as well as
of linear accelerations on gyroscope measurements (“g-
sensitivity”) can be modelled as

$(t) = SωMωAωWB(t) + AωAaWA(t) + bω(t) + νω (9)

where Sω and Mω are defined analogously to Sα and Mα in
(4), and Aω is a fully populated matrix. Despite presumably
having different displacements from the IRA, only a single
lever arm is considered in the calculation of AaWA(t). In
general, the effect of linear accelerations on gyroscope mea-
surements is small and insufficient to properly constrain the
estimate of a spatial displacement. In this work, we assume
the accelerometer and gyroscopes to be sufficiently close and
employ the lever arm estimated for the accelerometers. In
cases where an individual lever arm per accelerometer axis
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is determined, the estimate of one axis is employed for all
axes of the gyroscope.

D. The estimator

So far, we established the basis for modelling accelerom-
eter and gyroscope measurements from devices mounted
with an offset to the IRA. Generally, these models could be
employed in any estimator. However, both, (5) and, to a lesser
extent, (9), depend on angular accelerations, and this quantity
is not measured directly in most sensor suites. Accordingly, it
has to be inferred, and we employ the continuous-time batch
optimization paradigm [5], which estimates a continuously
differentiable sensor trajectory, yielding a smooth estimate
of angular accelerations.

In the following, we will give a brief introduction to
continuous-time estimation, which will follow Furgale et al.
[7] very closely. For a more thorough derivation, please see
the original publication [5].

Time-varying states are represented as the weighted sum
of a finite number of known analytical basis functions. For
example, a D-dimensional state, x(t), may be written as

Φ(t) :=
[
φ1(t) . . . φB(t)

]
, x(t) := Φ(t)c, (10)

where each φb(t) is a known D × 1 analytical function of
time and Φ(t) is a D×B stacked basis matrix. We estimate
x(t) by determining c, a B × 1 vector of coefficients.

While various basis functions are feasible, we employ
B-splines due to their simple analytical derivatives, good
representational power and finite temporal support, yielding
a sparse system of equations in the estimator that can be
solved efficiently.

The pose of F−→B is parameterized as a 6× 1 spline with
3 degrees of freedom for relative translation and 3 degrees
of freedom for relative orientation:

W tWB(t) := Φt(t)ct (11)
ϕ(t) := Φϕ(t)cϕ . (12)

In this paper, we use the axis/angle parameterization
for rotations, where ϕ(t) represents rotation by the angle
ϕ =

√
ϕ(t)Tϕ(t) about the axis ϕ(t)/ϕ(t). The orienta-

tion of F−→W with respect to F−→B at time t is given by
CBW (t) := C

(
ϕ(t)

)T
, where C(·) is a function that builds a

direction cosine matrix from the orientation parameters ϕ(t).
Acceleration W ẗWB(t) is computed as

W ẗWB(t) = Φ̈t(t)ct (13)

from the spline parameters ct.
Angular velocity and angular acceleration as perceived in
F−→B are computed as

BωWB(t) = CBW (t) WωWB(t) (14)

Bω̇WB(t) = CBW (t) W ω̇WB(t) (15)

with

WωWB(t) = S
(
ϕ(t)

)
ϕ̇(t) = S

(
Φ(t)cϕ

)
Φ̇(t)cϕ (16)

W ω̇WB(t) = S
(
ϕ(t)

)
ϕ̈(t) = S

(
Φ(t)cϕ

)
Φ̈(t)cϕ (17)

where S(·) is the matrix relating parameter rates to angular
velocities and accelerations [19].

For both, orientation and translation, a sixth-order B-spline
is employed, which encodes linear and angular acceleration
as a cubic polynomial.

Time-varying sensor biases are represented by cubic B-
splines:

b(t) := Φb(t)cb (18)

The estimator further requires inputs from exteroceptive
sensors to sufficiently constrain the trajectory. This can be
any sensor that acquires measurements sufficient to render
all quantities of interest observable. Since this work is an
extension of kalibr, we employed a global shutter camera
with a static calibration pattern for this purpose.

Projections of reference points on the calibration pattern
Wpi are modelled according to the well-established pinhole
camera model

yik = f(CTBC(CBW (tk + dc)
(
Wpi +W tWB(tk + dc)

)
+ BrBC)) + νy ,

(19)

where the function f(·) denotes a perspective projection. dc
is an unknown relative temporal offset that compensates for
either the IMU or the camera assigning timestamps with a
fixed offset with respect to their measurement instant. We
assume that the projections are corrupted in the image plane
by a zero-mean, discrete-time, white Gaussian noise process
of variance σ2

yI.
The estimator is formulated as a non-linear least-square

optimization problem. Our previously introduced measure-
ment models ((4), (9), and (19)) are all of the form
m(t) := h(Θ, t) + ν, where Θ is a vector containing all
estimated quantities, t denotes the instant at which the
measurement was recorded and the model is evaluated, and ν
is a zero-mean, white Gaussian noise process of strength σ2I.
Accordingly, the contribution of measurements m̃i

k recorded
with sensor i at times [t1, . . . , tN ] to the objective function
J can be formulated as

Ji :=

N∑
k=1

1

σ2
i

∣∣m̃i
k − hi(Θ, tk)

∣∣2 . (20)

Contributions from bias terms are evaluated according to

Jb :=

∫ tN

t1

1

σ2
b

∣∣ḃ(τ)∣∣2 dτ. (21)

The objective function is composed from these sensor and
bias terms, and the estimate is determined as the Θ that
minimizes J :

Θ = argmin
Θ

(Jα + J$ + Jy + Jbα + Jbω ) . (22)

We employ the Levenberg-Marquardt algorithm [20] for
non-linear optimization.

The following table lists the parameters and states com-
prised in Θ and partitions them into time-varying and time-
invariant, and IMU and “auxiliary” parameters.
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Time-Invariant

CαAB orientation of the accelerometers
CωAB orientation of the gyroscopes
BrBA displacement of the IMU
Sα accelerometer scale factors
Mα accelerometer misalignment
Sω gyroscope scale factors
Mω gyroscope misalignment
Aω effect of linear accelerations on gyroscopes

CBC orientation of the camera
BrBC displacement of the camera
dc temporal offset between IMU and camera
W g direction of gravity

Time-Varying

W tWB position of the IRA expressed in F−→W

ϕ orientation parameters of the IRA
ba accelerometer bias
bω gyroscope bias

IV. EXPERIMENTS

A. Experimental setup and dataset collection

Fig. 2: The experimental setup used in this work. The
integrated visual/inertial sensor [21] is equipped with two
global shutter image sensors, as well as three MEMS IMUs.
A factory calibrated Analog Devices ADIS16448 is mounted
centrally on the sensor frame; the two consumer grade
Invensense MPU9150 IMUs are located on the back of each
image sensor board.

For our experiments, we employed a visual/inertial sen-
sor [21], which was equipped with an Analog Devices
ADIS16448 and two Invensense MPU9150 IMUs. The latter
fall into the class of consumer grade devices, while the
ADIS16448 was calibrated intrinsically by the manufac-
turer. The sensor unit was manufactured by Skybotix, but
retrofitted with custom firmware to provide control over
the filtering of inertial measurements. Both IMUs were
sampled at a rate of 800Hz. For the ADIS16448, a 2-tap
filter was enabled; for the MPU9150, we chose a cut-off

TABLE II

sym. unit ADIS16448 MPU9150

Gyroscopes
White noise str. σω ° h−1

√
Hz−1 3.85× 101 1.84× 101

Bias diffusion σbω rad s−2
√

Hz−1 2.66× 10−5 1.08× 10−5

Accelerometers
White noise str. σα m s−2

√
Hz−1 1.86× 10−3 2.24× 10−3

Bias diffusion σbα m s−3
√

Hz−1 4.33× 10−4 7.53× 10−5

frequency of about 190Hz. For exteroceptive perception,
two MT9V034 WVGA global shutter image sensors were
employed. The cameras were triggered at a rate of 20Hz
and set to a constant, low exposure time. We calibrated
the cameras intrinsically and the stereo extrinsics using
the camera calibration functionality of kalibr on a separate
dataset beforehand.

This setup was dynamically moved by hand in front of
a checkerboard of known dimensions. Subsequently, the
recorded dataset was split into 20 chunks of only 10 s length.
We ensured that all rotational degrees of freedom were
excited sufficiently.

The parameters of the accelerometer and gyroscope noise
models (3) and (8) were determined from static sensor data,
i.e. from measurements where the IMUs were at rest. For
this purpose, the sensors were mechanically fixated, and
raw sensor measurements were captured at a rate of 800Hz
for a duration of 5 h. The sensor filter and range settings
were identical to those used during the experiments. Table II
lists the parameters that were identified and used for the
experimental evaluation. Fig. 3 shows the sample Allan
deviation of the gyroscopes and accelerometers, and the
Allan deviation that corresponds to the selected noise model
parameters.

For all experiments, we used 50 knots per second for the
B-spline representing biases and 250 knots per second for
the spline encoding the sensor trajectory.

B. IMU intrinsics and the extrinsics of multiple IMUs can
be precisely inferred in a single estimator

For the experiment on extrinsic calibration of multiple
IMUs, measurements of the two MPU9150 devices were
employed. We defined F−→B to align with one of the de-
vices and included IMU intrinsics—Sα,ω ,Mα,ω and Aω—
for both sensors, as well as extrinsics—Cα,ωAB and BrBA—
into the estimator. The displacement between the IMUs was
estimated as BrBA = [−5.98, 120.4,−1.02]T mm with stan-
dard deviation of σ = [1.44, 0.67, 1.20] mm. These values
compare well with those determined through measuring by
hand ([−10.0, 121.0, 0.0]± [8.0, 8.0, 0.0] mm). Note that the
displacement between the centroids of the packages was
measured, and that the uncertainty bounds (given by the
package dimensions of 4×4 mm and the relative orientations
of the two devices) reflect our lack of knowledge about the
accurate position of the accelerometer axes inside the device.
Due to imperfections in soldering devices to the printed
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Fig. 3: Allan deviation of the MPU9150 gyroscopes (top)
and accelerometers (bottom). The sample Allan deviations
are shown in grey, and the Allan deviations corresponding
to the noise model parameters used during the experiments
are shown in black (solid).

circuit board (PCB) and in the mechanical mount connecting
the PCBs holding both MPU9150 IMUs, it is impossible
to acquire accurate reference measurements for the relative
orientation of the two devices. Instead, we assessed the
precision as the square root of the orientation variance with
respect to the Fréchet expectation [22]. For CωAB , this was
evaluated to about 0.01◦, for CαAB to 1.95◦. Note that
absolute accuracy cannot be inferred from this assessment.
While the relative orientation of the gyroscopes to the IRA
exhibits a small variance, the estimate of the orientation of
the accelerometers is noticeably less precise.

To ensure comparability between devices, we repeated
the experiment to demonstrate intrinsic calibration for a
single MPU9150 and for the ADIS16448. The estimation
results for Sα,ω ,Mα,ω and dc are summarized in Table III.
While the ADIS16448 appears to be well calibrated by the
manufacturer, significant gyroscope scale factor errors and
axes misalignments were estimated for the MPU9150 (up to
1% and 1°). For both IMUs, a device intrinsic time delay
of approximately 3ms was estimated. Over the 20 datasets,
the standard deviation in the estimates were only about 15 µs
and 20 µs respectively.

TABLE III

symbol unit ADIS16448 MPU9150

Accelerometer
Sα − I ppm 1.73× 103 ± 1.8× 103 −4.20× 103 ± 2.9× 103

ppm −6.37× 103 ± 4.1× 103 7.76× 103 ± 1.2× 103

ppm 6.60× 103 ± 6.2× 103 7.92× 103 ± 2.7× 103

Mα
′′ −0.80× 103 ± 0.81× 103 −0.17× 103 ± 0.53× 103
′′ −1.77× 103 ± 1.11× 103 0.85× 103 ± 0.54× 103
′′ −0.11× 103 ± 1.74× 103 −0.36× 103 ± 0.44× 103

Gyroscope
Sω − I ppm −1.85× 103 ± 1.6× 103 3.01× 103 ± 0.6× 103

ppm 1.85× 103 ± 1.1× 103 −9.29× 103 ± 0.5× 103

ppm 0.99× 103 ± 0.3× 103 2.74× 103 ± 0.2× 103

Mω
′′ −0.14× 103 ± 0.16× 103 −0.31× 103 ± 0.09× 103
′′ −0.14× 103 ± 0.17× 103 −1.71× 103 ± 0.18× 103
′′ 0.03× 103 ± 0.25× 103 3.13× 103 ± 0.13× 103

dC µs 2.94× 103 ± 20 3.03× 103 ± 15

C. Positions of individual accelerometer axes can be dis-
cerned

In this experiment, three different calibrations were per-
formed for the ADIS16448 and one of the MPU9150: A)
Assuming that scaling and misalignment errors are compen-
sated for or negligible, a standard IMU/camera calibration
was performed, B) misalignment, scale errors and the effect
of linear accelerations on gyroscopes were estimated, but
individually different accelerometer axis displacements were
neglected, and C) a full calibration including individual axis
offsets was performed.

Fig. 4 depicts the estimated accelerometer positions ex-
pressed in F−→C for both IMUs. We determined a rough
estimate of the sensor package dimensions by hand and
visualized it as gray wire frames in the figures. Crosses (×)
mark the estimated position of F−→A for calibration A. For
the ADIS16448, the estimates lie clearly within the sensor
package and shows a comparatively small dispersion. For the
MPU9150—which is not factory calibrated—this estimate
exhibits a bias and is located outside the approximate sen-
sor dimensions. Consequently, estimating misalignment, g-
sensitivity and scale in calibration B yields improved results
for this device as depicted as pluses (+) in Fig. 4b. In
Fig. 4b, the measured footprint does not align perfectly
with our estimates. While the reason for this could lie in
biased calibrations, it is similarly plausible that the device
footprint measurements are inaccurate, particularly given the
complications associated with determining the origin of F−→C .
For the Analog Devices product, estimating IMU intrinsics
did not yield improved precision, again suggesting that the
factory calibration accurately compensates for these effects.
Calibration C produced clearly separated estimates for the
location of individual accelerometer axes in Fig. 4a. The x-
axis was estimated to be located about a centimeter apart
from the y- and z- axis. This may suggest that it is housed
inside a different IC, while the other two axes may share
the same die. This separation of axes is less pronounced for
the Invensense product, since this IMU is a single 4×4 mm
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TABLE IV

x y z

ADIS16448 y-axis [mm] 5.27± 0.53 −11.19± 0.31 0.67± 2.00
z-axis [mm] 2.91± 1.12 −11.14± 1.36 −1.15± 2.59

MPU9150 y-axis [mm] 0.71± 0.20 0.33± 0.33 0.32± 0.72
z-axis [mm] 1.76± 0.49 −0.80± 0.64 0.71± 1.27

chip. Nevertheless, the order of axes on the device can be
discerned and their approximate location can be inferred.
Table IV compiles the estimates of the y- and z-axis position
expressed in F−→A. Note that F−→A is defined in a way that its
x-axis aligns with the x-axis of the device. Estimates for
both devices yielded similar precision.

D. Estimating IMU intrinsics improves camera/IMU extrin-
sic calibration

Fig. 4b suggests that IMU scale errors and misalignments
do not only result in increased variance in the estimates,
but even in noticeably biased quantities. Accordingly, in-
trinsic calibration should be an integral part of calibration
involving low-cost devices. Fig. 5 visualizes the results of
Section IV-C quantitatively for the MPU9150: Using refer-
ence measurements extracted from CAD data, we determined
the accuracy of the approach. Note that the estimate of
the y-axis is significantly biased when IMU intrinsics are
not incorporated into the estimator. Including them yields
both, higher precision and greater accuracy. Please note that
the aforementioned problems regarding the acquisition of
reference measurements apply here as well.

V. CONCLUSION

In this work, we presented an extension to the open-
source calibration toolbox kalibr that allows for determining
the extrinsics and intrinsics of multiple IMUs in a single
estimator. We further demonstrated that it is feasible to infer
the location of individual accelerometer axes to millimeter
precision.

We believe that the significance of this contribution ex-
tends beyond the application of calibrating multiple IMUs,
and we intend to further investigate this in future work:
• Neglecting the physical displacement of individual ac-

celerometer axes in high-end IMUs yields a source of
deterministic error, which might be worth addressing in
applications where accuracy is crucial.

• Where multiple IMUs are available, state estimation
may benefit from incorporating measurements from all
devices. Recently, different approaches to continuous-
time SLAM have been proposed (e.g. [23], [24]), and
it would be straight-forward to extend these to consider
inputs from more than one IMU.

The biggest drawback of fusing data from multiple IMUs
or individually displaced accelerometer axes lies in the
dependence on angular accelerations, which in most sensor
suites are not sensed directly. While this work showed that
the continuous-time batch estimation framework is capable of
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Fig. 4: Visualization of CpCA, the estimated displacement
between camera and IMU. Crosses (×) mark the estimated
position of F−→A when intrinsics are neglected (estimator A).
Each cross indicates the result from one experiment. Pluses
(+) visualize the position when IMU intrinsics are included
in the estimation (estimator B). The results of the full-scale
estimator C are indicated with dots marking the estimated
position of each individual accelerometer axis (red: x-axis,
green: y-axis, blue: z-axis). Results suggest that the approach
is capable of discerning the positions of individual axes. The
results are less pronounced for the MPU9150, where all axes
are integrated in a package of 4× 4 mm.

inferring reasonable angular accelerations for our calibration
use-case, it remains future work to demonstrate this fact for
other applications and estimation frameworks. Furthermore,
we did not include temporal offsets (apart from an image
delay dc) in the estimator, and future work will estimate
individual delays for different IMUs as well as for accelerom-
eters and gyroscopes, acknowledging the fact that these may
not employ filters with identical characteristics.
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Fig. 5: Camera-IMU extrinsic translation estimation errors
for experiments with the MPU9150, with and without es-
timating the IMU intrinsic calibration parameters. These
results indicate that incorporating IMU intrinsic calibration
terms improves the accuracy of the extrinsic calibration
parameter estimates.
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