Visual-Inertial Navigation: A Tutorial

January 15, 2017

1 Notations

Table 1: Notations

$\mathbf{R} \in \mathbb{S O}(3)$	robot orientation in the global frame
$\mathbf{p} \in \mathbb{R}^{3}$	robot position in the global frame
$\mathbf{V} \in \mathbb{R}^{3}$	robot velocity in the global frame
$\mathbf{v} \in \mathbb{R}^{3}$	robot velocity in the body frame
$\mathbf{b}_{a} \in \mathbb{R}^{3}$	accelerometer bias
$\mathbf{f} \in \mathbb{R}^{3}$	landmark position in the global frame
$\mathbf{w}_{t} \in \mathbb{R}^{3}$	gyroscope reading at the time t
$\mathbf{a}_{t} \in \mathbb{R}^{3}$	accelerometer reading at the time t
$\mathbf{g} \in \mathbb{R}^{3}$	The gravity in the global frame

2 From Original Model

Here we ignore the gyroscope bias. The motion model of IMU and landmark is given in the following:

$$
\begin{align*}
\dot{\mathbf{R}} & =\mathbf{R} S\left(\mathbf{w}_{t}\right) \\
\dot{\mathbf{p}} & =\mathbf{R} \mathbf{v} \\
\dot{\mathbf{v}} & =-S\left(\mathbf{w}_{t}\right) \mathbf{v}+\left(\mathbf{a}_{t}-\mathbf{b}_{a}\right)+\mathbf{R}^{\top} \mathbf{g} \tag{1}\\
\dot{\mathbf{b}}_{a} & =\mathbf{0} \\
\dot{\mathbf{f}} & =\mathbf{0}
\end{align*}
$$

Now we define two variables \mathbf{F} and \mathbf{n} :

$$
\begin{align*}
\mathbf{F} & :=\mathbf{R}^{\top}(\mathbf{f}-\mathbf{p}) \\
\mathbf{n} & :=\mathbf{R}^{\top} \mathbf{g} \tag{2}
\end{align*}
$$

According to Eq. 1 and Eq.2, we get the dynamics of $\mathbf{X}\left(\mathbf{X}=\left(\mathbf{F}, \mathbf{v}, \mathbf{n}, \mathbf{b}_{a}\right)\right)$

$$
\begin{equation*}
\dot{\mathbf{X}}=\mathbf{A}_{t} \mathbf{X}+\mathbf{B}_{t} \tag{3}
\end{equation*}
$$

where $\mathbf{A}_{t}=\left[\begin{array}{cccc}-S\left(\mathbf{w}_{t}\right) & -\mathbf{I}_{3} & \mathbf{0}_{3,3} & \mathbf{0}_{3,3} \\ \mathbf{0}_{3,3} & -S\left(\mathbf{w}_{t}\right) & \mathbf{I}_{3} & -\mathbf{I}_{3} \\ \mathbf{0}_{3,3} & \mathbf{0}_{3,3} & -S\left(\mathbf{w}_{t}\right) & \mathbf{0}_{3,3} \\ \mathbf{0}_{3,3} & \mathbf{0}_{3,3} & \mathbf{0}_{3,3} & \mathbf{I}_{3}\end{array}\right]$ and $\mathbf{B}_{t}=\left[\begin{array}{c}\mathbf{0}_{3,1} \\ \mathbf{a}_{t} \\ \mathbf{0}_{3,1} \\ \mathbf{0}_{3,1}\end{array}\right]$. Please note that the dynamics of \mathbf{X} is linear time-varing system.

3 Observation Model of X

For simplicity, the transformation from IMU to camera is Identity. The camera measurement $\mathbf{z}_{t} \in \mathbb{R}^{2}$ for landmark at time t is

$$
\mathbf{z}_{t}=\left[\begin{array}{l}
u_{t} \tag{4}\\
v_{t}
\end{array}\right]=\mathbf{K}\left[\begin{array}{l}
\mathbf{F}_{x} / \mathbf{F}_{z} \\
\mathbf{F}_{y} / \mathbf{F}_{z}
\end{array}\right]+\mathbf{C}
$$

The equation above is equivalent to the following:

$$
\mathbf{K}^{-1}\left(\mathbf{z}_{t}-\mathbf{C}\right) \mathbf{F}_{z}=\left[\begin{array}{l}
\mathbf{F}_{x} \tag{5}\\
\mathbf{F}_{y}
\end{array}\right]
$$

i.e.,

$$
\left[\begin{array}{ll}
\mathbf{I}_{2} & \left.\mathbf{K}^{-1}\left(\mathbf{C}-\mathbf{z}_{t}\right)\right] \mathbf{F}=\mathbf{0}_{2,1} \tag{6}
\end{array}\right.
$$

i.e.,

$$
\begin{equation*}
\mathbf{W}_{t} \mathbf{X}=\mathbf{0}_{12,1} \tag{7}
\end{equation*}
$$

where

$$
\mathbf{W}_{t}=\left[\begin{array}{lll}
\mathbf{I}_{2} & \mathbf{K}^{-1}\left(\mathbf{C}-\mathbf{z}_{t}\right) & 0_{1,9} \tag{8}
\end{array}\right]
$$

Furthermore, we can conclude a linear observation model $h(\mathbf{X})=\mathbf{W}_{t} \mathbf{X}$.

4 Linear System

According to the linear dynamics and observation model, the system of \mathbf{X} is linear. Hence, we can easily prove its observability and calculate the initial state \mathbf{X}_{0} given the measurements between $[0, \mathrm{~T}]$ for some T .

