提交 fb7ecf70 编写于 作者: wuyangyong's avatar wuyangyong

在系统启动时复位全部外部芯片,防止工作在不确定状态,同时修正GPIO的配置:只在一处配置FSMC的IO

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@447 bbd45198-f89e-11dd-88c7-29a3b14d5316
上级 915bba10
......@@ -113,8 +113,6 @@ int rt_application_init()
{
rt_thread_t init_thread;
rt_hw_lcd_init();
#if (RT_THREAD_PRIORITY_MAX == 32)
init_thread = rt_thread_create("init",
rt_init_thread_entry, RT_NULL,
......
......@@ -118,6 +118,74 @@ static void all_device_reset(void)
GPIO_Init(GPIOA,&GPIO_InitStructure);
GPIO_ResetBits(GPIOA,GPIO_Pin_3);
/* FSMC GPIO configure */
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF
| RCC_APB2Periph_GPIOG, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/*
FSMC_D0 ~ FSMC_D3
PD14 FSMC_D0 PD15 FSMC_D1 PD0 FSMC_D2 PD1 FSMC_D3
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/*
FSMC_D4 ~ FSMC_D12
PE7 ~ PE15 FSMC_D4 ~ FSMC_D12
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10
| GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOE,&GPIO_InitStructure);
/* FSMC_D13 ~ FSMC_D15 PD8 ~ PD10 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/*
FSMC_A0 ~ FSMC_A5 FSMC_A6 ~ FSMC_A9
PF0 ~ PF5 PF12 ~ PF15
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3
| GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF,&GPIO_InitStructure);
/* FSMC_A10 ~ FSMC_A15 PG0 ~ PG5 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* FSMC_A16 ~ FSMC_A18 PD11 ~ PD13 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* RD-PD4 WR-PD5 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* NBL0-PE0 NBL1-PE1 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE,&GPIO_InitStructure);
/* NE1/NCE2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOD,&GPIO_InitStructure);
/* NE2 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* NE3 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOG,&GPIO_InitStructure);
/* NE4 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOG,&GPIO_InitStructure);
}
/* FSMC GPIO configure */
GPIO_SetBits(GPIOE,GPIO_Pin_5); /* DM9000A */
GPIO_SetBits(GPIOF,GPIO_Pin_10); /* LCD */
GPIO_SetBits(GPIOA,GPIO_Pin_3); /* SPI_FLASH */
......@@ -129,7 +197,7 @@ static void all_device_reset(void)
extern void FSMC_SRAM_Init(void);
void rt_hw_board_init()
{
NAND_IDTypeDef NAND_ID;
//NAND_IDTypeDef NAND_ID;
/* Configure the system clocks */
SystemInit();
......@@ -147,11 +215,11 @@ void rt_hw_board_init()
rt_kprintf("\r\n\r\nSystemInit......\r\n");
/* FSMC Initialization */
FSMC_NAND_Init();
//FSMC_NAND_Init();
/* NAND read ID command */
FSMC_NAND_ReadID(&NAND_ID);
rt_kprintf("Read the NAND ID:%02X%02X%02X%02X",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);
//FSMC_NAND_ReadID(&NAND_ID);
//rt_kprintf("Read the NAND ID:%02X%02X%02X%02X",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);
/* SRAM init */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
......@@ -214,7 +282,7 @@ void rt_hw_board_init()
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;/* 72M/64=1.125M */
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;/* 72M/64=1.125M */
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
......
......@@ -3,61 +3,61 @@
#define FSMC_GPIO_CONFIG
static void delay_ms(unsigned int dt)
{
volatile unsigned int u;
for (u=0;u<dt*30;u++);
}
//static void delay_ms(unsigned int dt)
//{
// volatile unsigned int u;
// for (u=0;u<dt*30;u++);
//}
static void FSMC_Init(void)
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
#ifdef FSMC_GPIO_CONFIG
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/* SRAM Data lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* SRAM Address lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NOE and NWE configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NE2 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/* NBL0, NBL1 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE, &GPIO_InitStructure);
#endif
//
//#ifdef FSMC_GPIO_CONFIG
// GPIO_InitTypeDef GPIO_InitStructure;
//
// RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
// RCC_APB2Periph_GPIOF, ENABLE);
//
// /*-- GPIO Configuration ------------------------------------------------------*/
// /* SRAM Data lines configuration */
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
// GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
// GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
// GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
// GPIO_Init(GPIOD, &GPIO_InitStructure);
//
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
// GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
// GPIO_Pin_15;
// GPIO_Init(GPIOE, &GPIO_InitStructure);
//
// /* SRAM Address lines configuration */
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
// GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
// GPIO_Pin_14 | GPIO_Pin_15;
// GPIO_Init(GPIOF, &GPIO_InitStructure);
//
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
// GPIO_Pin_4 | GPIO_Pin_5;
// GPIO_Init(GPIOG, &GPIO_InitStructure);
//
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
// GPIO_Init(GPIOD, &GPIO_InitStructure);
//
// /* NOE and NWE configuration */
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
// GPIO_Init(GPIOD, &GPIO_InitStructure);
//
// /* NE2 configuration */
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;
// GPIO_Init(GPIOG, &GPIO_InitStructure);
//
// /* NBL0, NBL1 configuration */
// GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
// GPIO_Init(GPIOE, &GPIO_InitStructure);
//#endif
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_AddressSetupTime = 2; // safe value 2
......@@ -91,14 +91,14 @@ static void FSMC_Init(void)
void ftm0371_port_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(LCD_RST_RCC, ENABLE);
GPIO_InitStructure.GPIO_Pin = LCD_RST_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_Init(LCD_RST_PORT, &GPIO_InitStructure);
LCD_RST_0; // reset the lcd
// GPIO_InitTypeDef GPIO_InitStructure;
//
// RCC_APB2PeriphClockCmd(LCD_RST_RCC, ENABLE);
// GPIO_InitStructure.GPIO_Pin = LCD_RST_PIN;
// GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
// GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
// GPIO_Init(LCD_RST_PORT, &GPIO_InitStructure);
// LCD_RST_0; // reset the lcd
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
FSMC_Init();
......@@ -107,8 +107,8 @@ void ftm0371_port_init(void)
//初始化函数
void ftm0371_init(void)
{
LCD_RST_1;
delay_ms(1000);
// LCD_RST_1;
// delay_ms(1000);
//initializing funciton 1
LCD_WR_REG(0xA1);
......
......@@ -20,7 +20,7 @@
/* Private define ------------------------------------------------------------*/
#define FSMC_Bank_NAND FSMC_Bank2_NAND
#define Bank_NAND_ADDR Bank2_NAND_ADDR
#define Bank_NAND_ADDR Bank2_NAND_ADDR
#define Bank2_NAND_ADDR ((u32)0x70000000)
/* Private macro -------------------------------------------------------------*/
......@@ -40,61 +40,30 @@
*******************************************************************************/
void FSMC_NAND_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
FSMC_NANDInitTypeDef FSMC_NANDInitStructure;
FSMC_NAND_PCCARDTimingInitTypeDef p;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/* CLE, ALE, D0->D3, NOE, NWE and NCE2 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_14 | GPIO_Pin_15 |
GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |
GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* D4->D7 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* NWAIT NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* INT2 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_SetupTime = 0x1;
p.FSMC_WaitSetupTime = 0x3;
p.FSMC_HoldSetupTime = 0x2;
p.FSMC_HiZSetupTime = 0x1;
FSMC_NANDInitStructure.FSMC_Bank = FSMC_Bank2_NAND;
FSMC_NANDInitStructure.FSMC_Waitfeature = FSMC_Waitfeature_Enable;
FSMC_NANDInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NANDInitStructure.FSMC_ECC = FSMC_ECC_Enable;
FSMC_NANDInitStructure.FSMC_ECCPageSize = FSMC_ECCPageSize_512Bytes;
FSMC_NANDInitTypeDef FSMC_NANDInitStructure;
FSMC_NAND_PCCARDTimingInitTypeDef p;
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_SetupTime = 0x1;
p.FSMC_WaitSetupTime = 0x3;
p.FSMC_HoldSetupTime = 0x2;
p.FSMC_HiZSetupTime = 0x1;
FSMC_NANDInitStructure.FSMC_Bank = FSMC_Bank2_NAND;
FSMC_NANDInitStructure.FSMC_Waitfeature = FSMC_Waitfeature_Enable;
FSMC_NANDInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NANDInitStructure.FSMC_ECC = FSMC_ECC_Enable;
FSMC_NANDInitStructure.FSMC_ECCPageSize = FSMC_ECCPageSize_512Bytes;
// FSMC_NANDInitStructure.FSMC_AddressLowMapping = FSMC_AddressLowMapping_Direct;
FSMC_NANDInitStructure.FSMC_TCLRSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_TARSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_CommonSpaceTimingStruct = &p;
FSMC_NANDInitStructure.FSMC_AttributeSpaceTimingStruct = &p;
FSMC_NANDInitStructure.FSMC_TCLRSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_TARSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_CommonSpaceTimingStruct = &p;
FSMC_NANDInitStructure.FSMC_AttributeSpaceTimingStruct = &p;
FSMC_NANDInit(&FSMC_NANDInitStructure);
FSMC_NANDInit(&FSMC_NANDInitStructure);
/* FSMC NAND Bank Cmd Test */
FSMC_NANDCmd(FSMC_Bank2_NAND, ENABLE);
/* FSMC NAND Bank Cmd Test */
FSMC_NANDCmd(FSMC_Bank2_NAND, ENABLE);
}
/******************************************************************************
......@@ -107,253 +76,253 @@ void FSMC_NAND_Init(void)
*******************************************************************************/
void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID)
{
u32 data = 0;
u32 data = 0;
/* Send Command to the command area */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = 0x90;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
/* Send Command to the command area */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = 0x90;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
/* Sequence to read ID from NAND flash */
data = *(vu32 *)(Bank_NAND_ADDR | DATA_AREA);
/* Sequence to read ID from NAND flash */
data = *(vu32 *)(Bank_NAND_ADDR | DATA_AREA);
NAND_ID->Maker_ID = ADDR_1st_CYCLE (data);
NAND_ID->Device_ID = ADDR_2nd_CYCLE (data);
NAND_ID->Third_ID = ADDR_3rd_CYCLE (data);
NAND_ID->Fourth_ID = ADDR_4th_CYCLE (data);
NAND_ID->Maker_ID = ADDR_1st_CYCLE (data);
NAND_ID->Device_ID = ADDR_2nd_CYCLE (data);
NAND_ID->Third_ID = ADDR_3rd_CYCLE (data);
NAND_ID->Fourth_ID = ADDR_4th_CYCLE (data);
}
/******************************************************************************
* Function Name : FSMC_NAND_WriteSmallPage
* Description : This routine is for writing one or several 512 Bytes Page size.
* Input : - pBuffer: pointer on the Buffer containing data to be written
* Input : - pBuffer: pointer on the Buffer containing data to be written
* - Address: First page address
* - NumPageToWrite: Number of page to write
* - NumPageToWrite: Number of page to write
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*******************************************************************************/
u32 FSMC_NAND_WriteSmallPage(u8 *pBuffer, NAND_ADDRESS Address, u32 NumPageToWrite)
{
u32 index = 0x00, numpagewritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 2048;
u32 index = 0x00, numpagewritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 2048;
while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write command and address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write command and address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);
/* Write data */
for(; index < size; index++)
{
*(vu8 *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
/* Write data */
for(; index < size; index++)
{
*(vu8 *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
if(status == NAND_READY)
{
numpagewritten++;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
NumPageToWrite--;
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
/* Calculate Next small page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
return (status | addressstatus);
if(status == NAND_READY)
{
numpagewritten++;
NumPageToWrite--;
/* Calculate Next small page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
return (status | addressstatus);
}
/******************************************************************************
* Function Name : FSMC_NAND_ReadSmallPage
* Description : This routine is for sequential read from one or several
* Description : This routine is for sequential read from one or several
* 512 Bytes Page size.
* Input : - pBuffer: pointer on the Buffer to fill
* Input : - pBuffer: pointer on the Buffer to fill
* - Address: First page address
* - NumPageToRead: Number of page to read
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*******************************************************************************/
u32 FSMC_NAND_ReadSmallPage(u8 *pBuffer, NAND_ADDRESS Address, u32 NumPageToRead)
{
u32 index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 2048, i = 0;
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);
while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
for(i = 0; i <= 10000; i++);
/* Get Data into Buffer */
for(; index < size; index++)
u32 index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 2048, i = 0;
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);
while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
pBuffer[index]= *(vu8 *)(Bank_NAND_ADDR | DATA_AREA);
}
/* Page Read command and page address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
for(i = 0; i <= 10000; i++);
/* Get Data into Buffer */
for(; index < size; index++)
{
pBuffer[index]= *(vu8 *)(Bank_NAND_ADDR | DATA_AREA);
}
numpageread++;
NumPageToRead--;
numpageread++;
NumPageToRead--;
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
status = FSMC_NAND_GetStatus();
status = FSMC_NAND_GetStatus();
return (status | addressstatus);
return (status | addressstatus);
}
/******************************************************************************
* Function Name : FSMC_NAND_WriteSpareArea
* Description : This routine write the spare area information for the specified
* Description : This routine write the spare area information for the specified
* pages addresses.
* Input : - pBuffer: pointer on the Buffer containing data to be written
* Input : - pBuffer: pointer on the Buffer containing data to be written
* - Address: First page address
* - NumSpareAreaTowrite: Number of Spare Area to write
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*******************************************************************************/
u32 FSMC_NAND_WriteSpareArea(u8 *pBuffer, NAND_ADDRESS Address, u32 NumSpareAreaTowrite)
{
u32 index = 0x00, numsparesreawritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 0x00;
u32 index = 0x00, numsparesreawritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 0x00;
while((NumSpareAreaTowrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write Spare area command and address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
/* Calculate the size */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparesreawritten);
/* Write the data */
for(; index < size; index++)
while((NumSpareAreaTowrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
*(vu8 *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
/* Page write Spare area command and address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
/* Calculate the size */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparesreawritten);
/* Write the data */
for(; index < size; index++)
{
*(vu8 *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
if(status == NAND_READY)
{
numsparesreawritten++;
NumSpareAreaTowrite--;
/* Calculate Next page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
if(status == NAND_READY)
{
numsparesreawritten++;
NumSpareAreaTowrite--;
/* Calculate Next page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
return (status | addressstatus);
return (status | addressstatus);
}
/******************************************************************************
* Function Name : FSMC_NAND_ReadSpareArea
* Description : This routine read the spare area information from the specified
* pages addresses.
* Input : - pBuffer: pointer on the Buffer to fill
* Input : - pBuffer: pointer on the Buffer to fill
* - Address: First page address
* - NumSpareAreaToRead: Number of Spare Area to read
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*******************************************************************************/
u32 FSMC_NAND_ReadSpareArea(u8 *pBuffer, NAND_ADDRESS Address, u32 NumSpareAreaToRead)
{
u32 numsparearearead = 0x00, index = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 0x00;
u32 numsparearearead = 0x00, index = 0x00, addressstatus = NAND_VALID_ADDRESS;
u32 status = NAND_READY, size = 0x00;
while((NumSpareAreaToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
while((NumSpareAreaToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
/* Data Read */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparearearead);
/* Get Data into Buffer */
for ( ;index < size; index++)
{
pBuffer[index] = *(vu8 *)(Bank_NAND_ADDR | DATA_AREA);
}
numsparearearead++;
NumSpareAreaToRead--;
/* Data Read */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparearearead);
/* Get Data into Buffer */
for ( ; index < size; index++)
{
pBuffer[index] = *(vu8 *)(Bank_NAND_ADDR | DATA_AREA);
}
numsparearearead++;
NumSpareAreaToRead--;
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
status = FSMC_NAND_GetStatus();
status = FSMC_NAND_GetStatus();
return (status | addressstatus);
return (status | addressstatus);
}
/******************************************************************************
......@@ -362,23 +331,23 @@ u32 FSMC_NAND_ReadSpareArea(u8 *pBuffer, NAND_ADDRESS Address, u32 NumSpareAreaT
* Input : - Address: Any address into block to be erased
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
*******************************************************************************/
u32 FSMC_NAND_EraseBlock(NAND_ADDRESS Address)
{
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(ROW_ADDRESS);
*(vu8 *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_5fh_CYCLE(ROW_ADDRESS);
return (FSMC_NAND_GetStatus());
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;
return (FSMC_NAND_GetStatus());
}
/******************************************************************************
......@@ -390,9 +359,9 @@ u32 FSMC_NAND_EraseBlock(NAND_ADDRESS Address)
*******************************************************************************/
u32 FSMC_NAND_Reset(void)
{
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;
return (NAND_READY);
return (NAND_READY);
}
/******************************************************************************
......@@ -401,63 +370,63 @@ u32 FSMC_NAND_Reset(void)
* Input : None
* Output : None
* Return : New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* - NAND_READY: when memory is ready for the next operation
*******************************************************************************/
u32 FSMC_NAND_GetStatus(void)
{
u32 timeout = 0x1000000, status = NAND_READY;
u32 timeout = 0x1000000, status = NAND_READY;
status = FSMC_NAND_ReadStatus();
status = FSMC_NAND_ReadStatus();
/* Wait for a NAND operation to complete or a TIMEOUT to occur */
while ((status != NAND_READY) &&( timeout != 0x00))
{
status = FSMC_NAND_ReadStatus();
timeout --;
}
/* Wait for a NAND operation to complete or a TIMEOUT to occur */
while ((status != NAND_READY) &&( timeout != 0x00))
{
status = FSMC_NAND_ReadStatus();
timeout --;
}
if(timeout == 0x00)
{
status = NAND_TIMEOUT_ERROR;
}
if(timeout == 0x00)
{
status = NAND_TIMEOUT_ERROR;
}
/* Return the operation status */
return (status);
/* Return the operation status */
return (status);
}
/******************************************************************************
* Function Name : FSMC_NAND_ReadStatus
* Description : Reads the NAND memory status using the Read status command
* Description : Reads the NAND memory status using the Read status command
* Input : None
* Output : None
* Return : The status of the NAND memory. This parameter can be:
* - NAND_BUSY: when memory is busy
* - NAND_READY: when memory is ready for the next operation
* - NAND_ERROR: when the previous operation gererates error
* - NAND_READY: when memory is ready for the next operation
* - NAND_ERROR: when the previous operation gererates error
*******************************************************************************/
u32 FSMC_NAND_ReadStatus(void)
{
u32 data = 0x00, status = NAND_BUSY;
/* Read status operation ------------------------------------ */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
data = *(vu8 *)(Bank_NAND_ADDR);
if((data & NAND_ERROR) == NAND_ERROR)
{
status = NAND_ERROR;
}
else if((data & NAND_READY) == NAND_READY)
{
status = NAND_READY;
}
else
{
status = NAND_BUSY;
}
return (status);
u32 data = 0x00, status = NAND_BUSY;
/* Read status operation ------------------------------------ */
*(vu8 *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
data = *(vu8 *)(Bank_NAND_ADDR);
if((data & NAND_ERROR) == NAND_ERROR)
{
status = NAND_ERROR;
}
else if((data & NAND_READY) == NAND_READY)
{
status = NAND_READY;
}
else
{
status = NAND_BUSY;
}
return (status);
}
/******************************************************************************
......@@ -471,28 +440,28 @@ u32 FSMC_NAND_ReadStatus(void)
*******************************************************************************/
u32 FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address)
{
u32 status = NAND_VALID_ADDRESS;
Address->Page++;
if(Address->Page == NAND_BLOCK_SIZE)
{
Address->Page = 0;
Address->Block++;
if(Address->Block == NAND_ZONE_SIZE)
{
Address->Block = 0;
Address->Zone++;
u32 status = NAND_VALID_ADDRESS;
if(Address->Zone == NAND_MAX_ZONE)
{
status = NAND_INVALID_ADDRESS;
}
Address->Page++;
if(Address->Page == NAND_BLOCK_SIZE)
{
Address->Page = 0;
Address->Block++;
if(Address->Block == NAND_ZONE_SIZE)
{
Address->Block = 0;
Address->Zone++;
if(Address->Zone == NAND_MAX_ZONE)
{
status = NAND_INVALID_ADDRESS;
}
}
}
}
return (status);
return (status);
}
/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/
......@@ -34,83 +34,41 @@
*******************************************************************************/
void FSMC_SRAM_Init(void)
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/* SRAM Data lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* SRAM Address lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NOE and NWE configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NE3 NE4 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_12;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/* NBL0, NBL1 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_AddressSetupTime = 0;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 2;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/* Enable FSMC Bank1_SRAM Bank */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM3, ENABLE);
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_AddressSetupTime = 0;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 2;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/* Enable FSMC Bank1_SRAM Bank */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM3, ENABLE);
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
}
/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/
......@@ -125,44 +125,6 @@
static u16 DeviceCode;
static void LCD_CtrlLinesConfig(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Enable FSMC, GPIOD, GPIOE, GPIOF, GPIOG and AFIO clocks */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG |
RCC_APB2Periph_AFIO, ENABLE);
/* Set PD.00(D2), PD.01(D3), PD.04(NOE), PD.05(NWE), PD.08(D13), PD.09(D14),
PD.10(D15), PD.14(D0), PD.15(D1) as alternate
function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |
GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* Set PE.07(D4), PE.08(D5), PE.09(D6), PE.10(D7), PE.11(D8), PE.12(D9), PE.13(D10),
PE.14(D11), PE.15(D12) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
GPIO_WriteBit(GPIOE, GPIO_Pin_6, Bit_SET);
/* Set PF.00(A0 (RS)) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_2;
GPIO_Init(GPIOF, &GPIO_InitStructure);
/* Set NE2(LCD/CS) as alternate function push pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_Init(GPIOG, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : LCD_FSMCConfig
* Description : Configures the Parallel interface (FSMC) for LCD(Parallel mode)
......@@ -213,17 +175,6 @@ static void LCD_FSMCConfig(void)
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);
}
static void LCD_X_Init(void)
{
/* Configure the LCD Control pins --------------------------------------------*/
LCD_CtrlLinesConfig();
/* Configure the FSMC Parallel interface -------------------------------------*/
LCD_FSMCConfig();
}
/*******************************************************************************
* Function Name : ili9325_WriteReg
* Description : Writes to the selected LCD register.
......@@ -295,19 +246,7 @@ unsigned short ili9325_ReadGRAM(unsigned short x,unsigned short y)
void ili9325_Initializtion(void)
{
volatile unsigned int i;
LCD_X_Init();
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF,ENABLE);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOF,&GPIO_InitStructure);
}
GPIO_SetBits(GPIOF, GPIO_Pin_10);
LCD_FSMCConfig();
DeviceCode = LCD_ReadReg(0x0000);
if (DeviceCode==0x9325||DeviceCode==0x9328)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册