/* * Copyright (c) 2019 TAOS Data, Inc. * * This program is free software: you can use, redistribute, and/or modify * it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include "tdbInt.h" #define TDB_BTREE_ROOT 0x1 #define TDB_BTREE_LEAF 0x2 #define TDB_BTREE_PAGE_IS_ROOT(flags) TDB_FLAG_HAS(flags, TDB_BTREE_ROOT) #define TDB_BTREE_PAGE_IS_LEAF(flags) TDB_FLAG_HAS(flags, TDB_BTREE_LEAF) #define TDB_BTREE_ASSERT_FLAG(flags) \ ASSERT(TDB_FLAG_IS(flags, TDB_BTREE_ROOT) || TDB_FLAG_IS(flags, TDB_BTREE_LEAF) || \ TDB_FLAG_IS(flags, TDB_BTREE_ROOT | TDB_BTREE_LEAF) || TDB_FLAG_IS(flags, 0)) struct SBTree { SPgno root; int keyLen; int valLen; SPager *pPager; FKeyComparator kcmpr; u8 fanout; int pageSize; int maxLocal; int minLocal; int maxLeaf; int minLeaf; u8 *pTmp; }; typedef struct __attribute__((__packed__)) { SPgno rChild; } SBtPageHdr; typedef struct { u16 flags; SBTree *pBt; } SBtreeZeroPageArg; typedef struct { int kLen; u8 *pKey; int vLen; u8 *pVal; SPgno pgno; u8 *pTmpSpace; } SCellDecoder; static int tdbBtCursorMoveTo(SBtCursor *pCur, const void *pKey, int kLen, int *pCRst); static int tdbDefaultKeyCmprFn(const void *pKey1, int keyLen1, const void *pKey2, int keyLen2); static int tdbBtreeOpenImpl(SBTree *pBt); static int tdbBtreeZeroPage(SPage *pPage, void *arg); static int tdbBtreeInitPage(SPage *pPage, void *arg); static int tdbBtreeEncodeCell(SPage *pPage, const void *pKey, int kLen, const void *pVal, int vLen, SCell *pCell, int *szCell); static int tdbBtreeDecodeCell(SPage *pPage, const SCell *pCell, SCellDecoder *pDecoder); static int tdbBtreeBalance(SBtCursor *pCur); int tdbBtreeOpen(int keyLen, int valLen, SPager *pPager, FKeyComparator kcmpr, SBTree **ppBt) { SBTree *pBt; int ret; *ppBt = NULL; pBt = (SBTree *)calloc(1, sizeof(*pBt)); if (pBt == NULL) { return -1; } // pBt->keyLen pBt->keyLen = keyLen; // pBt->valLen pBt->valLen = valLen; // pBt->pPager pBt->pPager = pPager; // pBt->kcmpr pBt->kcmpr = kcmpr ? kcmpr : tdbDefaultKeyCmprFn; // pBt->fanout if (keyLen == TDB_VARIANT_LEN) { pBt->fanout = TDB_DEFAULT_FANOUT; } else { ASSERT(0); // TODO: pBt->fanout = 0; } // pBt->pageSize pBt->pageSize = tdbPagerGetPageSize(pPager); // pBt->maxLocal pBt->maxLocal = (pBt->pageSize - sizeof(SPageHdr)) / pBt->fanout; // pBt->minLocal: Should not be allowed smaller than 15, which is [nPayload][nKey][nData] pBt->minLocal = (pBt->pageSize - sizeof(SPageHdr)) / pBt->fanout / 2; // pBt->maxLeaf pBt->maxLeaf = pBt->pageSize - sizeof(SPageHdr); // pBt->minLeaf pBt->minLeaf = pBt->minLocal; // TODO: pBt->root ret = tdbBtreeOpenImpl(pBt); if (ret < 0) { free(pBt); return -1; } *ppBt = pBt; return 0; } int tdbBtreeClose(SBTree *pBt) { // TODO return 0; } int tdbBtreeCursor(SBtCursor *pCur, SBTree *pBt) { pCur->pBt = pBt; pCur->iPage = -1; pCur->pPage = NULL; pCur->idx = -1; return 0; } int tdbBtCursorInsert(SBtCursor *pCur, const void *pKey, int kLen, const void *pVal, int vLen) { int ret; int idx; SPager *pPager; SCell *pCell; int szCell; int cret; SBTree *pBt; ret = tdbBtCursorMoveTo(pCur, pKey, kLen, &cret); if (ret < 0) { // TODO: handle error return -1; } if (pCur->idx == -1) { ASSERT(TDB_PAGE_NCELLS(pCur->pPage) == 0); idx = 0; } else { if (cret > 0) { idx = pCur->idx + 1; } else if (cret < 0) { idx = pCur->idx; } else { /* TODO */ ASSERT(0); } } // TODO: refact code here pBt = pCur->pBt; if (!pBt->pTmp) { pBt->pTmp = (u8 *)malloc(pBt->pageSize); if (pBt->pTmp == NULL) { return -1; } } pCell = pBt->pTmp; // Encode the cell ret = tdbBtreeEncodeCell(pCur->pPage, pKey, kLen, pVal, vLen, pCell, &szCell); if (ret < 0) { return -1; } // Insert the cell to the index ret = tdbPageInsertCell(pCur->pPage, idx, pCell, szCell); if (ret < 0) { return -1; } // If page is overflow, balance the tree if (pCur->pPage->nOverflow > 0) { ret = tdbBtreeBalance(pCur); if (ret < 0) { return -1; } } return 0; } static int tdbBtCursorMoveToChild(SBtCursor *pCur, SPgno pgno) { // TODO return 0; } static int tdbBtCursorMoveTo(SBtCursor *pCur, const void *pKey, int kLen, int *pCRst) { int ret; SBTree *pBt; SPager *pPager; pBt = pCur->pBt; pPager = pBt->pPager; if (pCur->iPage < 0) { ASSERT(pCur->iPage == -1); ASSERT(pCur->idx == -1); // Move from the root ret = tdbPagerFetchPage(pPager, pBt->root, &(pCur->pPage), tdbBtreeInitPage, pBt); if (ret < 0) { ASSERT(0); return -1; } pCur->iPage = 0; if (TDB_PAGE_NCELLS(pCur->pPage) == 0) { // Current page is empty ASSERT(TDB_FLAG_IS(TDB_PAGE_FLAGS(pCur->pPage), TDB_BTREE_ROOT | TDB_BTREE_LEAF)); return 0; } for (;;) { int lidx, ridx, midx, c, nCells; SCell *pCell; SPage *pPage; SCellDecoder cd = {0}; pPage = pCur->pPage; nCells = TDB_PAGE_NCELLS(pPage); lidx = 0; ridx = nCells - 1; ASSERT(nCells > 0); for (;;) { if (lidx > ridx) break; midx = (lidx + ridx) >> 1; pCell = TDB_PAGE_CELL_AT(pPage, midx); ret = tdbBtreeDecodeCell(pPage, pCell, &cd); if (ret < 0) { // TODO: handle error ASSERT(0); return -1; } // Compare the key values c = pBt->kcmpr(pKey, kLen, cd.pKey, cd.kLen); if (c < 0) { /* input-key < cell-key */ ridx = midx - 1; } else if (c > 0) { /* input-key > cell-key */ lidx = midx + 1; } else { /* input-key == cell-key */ break; } } // Move downward or break u16 flags = TDB_PAGE_FLAGS(pPage); u8 leaf = TDB_BTREE_PAGE_IS_LEAF(flags); if (leaf) { pCur->idx = midx; *pCRst = c; break; } else { if (c <= 0) { pCur->idx = midx; tdbBtCursorMoveToChild(pCur, cd.pgno); } else { if (midx == nCells - 1) { /* Move to right-most child */ pCur->idx = midx + 1; tdbBtCursorMoveToChild(pCur, ((SBtPageHdr *)(pPage->pAmHdr))->rChild); } else { // TODO: reset cd as uninitialized pCur->idx = midx + 1; pCell = TDB_PAGE_CELL_AT(pPage, midx + 1); tdbBtreeDecodeCell(pPage, pCell, &cd); tdbBtCursorMoveToChild(pCur, cd.pgno); } } } } } else { // TODO: Move the cursor from a some position instead of a clear state ASSERT(0); } return 0; } static int tdbBtCursorMoveToRoot(SBtCursor *pCur) { SBTree *pBt; SPager *pPager; SPage *pPage; int ret; pBt = pCur->pBt; pPager = pBt->pPager; // pPage = tdbPagerGet(pPager, pBt->root, true); // if (pPage == NULL) { // // TODO: handle error // } // ret = tdbInitBtPage(pPage, &pBtPage); // if (ret < 0) { // // TODO // return 0; // } // pCur->pPage = pBtPage; // pCur->iPage = 0; return 0; } static int tdbDefaultKeyCmprFn(const void *pKey1, int keyLen1, const void *pKey2, int keyLen2) { int mlen; int cret; ASSERT(keyLen1 > 0 && keyLen2 > 0 && pKey1 != NULL && pKey2 != NULL); mlen = keyLen1 < keyLen2 ? keyLen1 : keyLen2; cret = memcmp(pKey1, pKey2, mlen); if (cret == 0) { if (keyLen1 < keyLen2) { cret = -1; } else if (keyLen1 > keyLen2) { cret = 1; } else { cret = 0; } } return cret; } static int tdbBtreeOpenImpl(SBTree *pBt) { // Try to get the root page of the an existing btree SPgno pgno; SPage *pPage; int ret; { // 1. TODO: Search the main DB to check if the DB exists pgno = 0; } if (pgno != 0) { pBt->root = pgno; return 0; } // Try to create a new database SBtreeZeroPageArg zArg = {.flags = TDB_BTREE_ROOT | TDB_BTREE_LEAF, .pBt = pBt}; ret = tdbPagerNewPage(pBt->pPager, &pgno, &pPage, tdbBtreeZeroPage, &zArg); if (ret < 0) { return -1; } // TODO: Unref the page ASSERT(pgno != 0); pBt->root = pgno; return 0; } static int tdbBtreeInitPage(SPage *pPage, void *arg) { SBTree *pBt; u16 flags; u8 isLeaf; pBt = (SBTree *)arg; flags = TDB_PAGE_FLAGS(pPage); isLeaf = TDB_BTREE_PAGE_IS_LEAF(flags); if (isLeaf) { pPage->szAmHdr = 0; } else { pPage->szAmHdr = sizeof(SBtPageHdr); } pPage->pPageHdr = pPage->pData; pPage->pAmHdr = pPage->pPageHdr + pPage->szPageHdr; pPage->pCellIdx = pPage->pAmHdr + pPage->szAmHdr; pPage->pFreeStart = pPage->pCellIdx + pPage->szOffset * TDB_PAGE_NCELLS(pPage); pPage->pFreeEnd = pPage->pData + TDB_PAGE_CCELLS(pPage); pPage->pPageFtr = (SPageFtr *)(pPage->pData + pPage->pageSize - sizeof(SPageFtr)); TDB_BTREE_ASSERT_FLAG(flags); // Init other fields if (isLeaf) { pPage->kLen = pBt->keyLen; pPage->vLen = pBt->valLen; pPage->maxLocal = pBt->maxLeaf; pPage->minLocal = pBt->minLeaf; } else { pPage->kLen = pBt->keyLen; pPage->vLen = sizeof(SPgno); pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; } // TODO: need to update the SPage.nFree pPage->nFree = pPage->pFreeEnd - pPage->pFreeStart; pPage->nOverflow = 0; return 0; } static int tdbBtreeZeroPage(SPage *pPage, void *arg) { u16 flags; SBTree *pBt; flags = ((SBtreeZeroPageArg *)arg)->flags; pBt = ((SBtreeZeroPageArg *)arg)->pBt; pPage->pPageHdr = pPage->pData; // Init the page header TDB_PAGE_FLAGS_SET(pPage, flags); TDB_PAGE_NCELLS_SET(pPage, 0); TDB_PAGE_CCELLS_SET(pPage, pBt->pageSize - sizeof(SPageFtr)); TDB_PAGE_FCELL_SET(pPage, 0); TDB_PAGE_NFREE_SET(pPage, 0); tdbBtreeInitPage(pPage, (void *)pBt); return 0; } #ifndef TDB_BTREE_BALANCE typedef struct { SBTree *pBt; SPage *pParent; int idx; i8 nOld; SPage *pOldPages[3]; i8 nNewPages; SPage *pNewPages[5]; } SBtreeBalanceHelper; static int tdbBtreeCopyPageContent(SPage *pFrom, SPage *pTo) { int nCells = TDB_PAGE_NCELLS(pFrom); int cCells = TDB_PAGE_CCELLS(pFrom); int fCell = TDB_PAGE_FCELL(pFrom); int nFree = TDB_PAGE_NFREE(pFrom); pTo->pFreeStart = pTo->pCellIdx + nCells * pFrom->szOffset; memcpy(pTo->pCellIdx, pFrom->pCellIdx, nCells * pFrom->szOffset); pTo->pFreeEnd = (u8 *)pTo->pPageFtr - (u8 *)(pFrom->pPageFtr) + pFrom->pFreeEnd; memcpy(pTo->pFreeEnd, pFrom->pFreeEnd, (u8 *)pFrom->pPageFtr - pFrom->pFreeEnd); TDB_PAGE_NCELLS_SET(pTo, nCells); TDB_PAGE_CCELLS_SET(pTo, cCells); TDB_PAGE_FCELL_SET(pTo, fCell); TDB_PAGE_NFREE_SET(pTo, nFree); // TODO: update other fields return 0; } static int tdbBtreeBalanceDeeper(SBTree *pBt, SPage *pRoot, SPage **ppChild) { SPager *pPager; SPage *pChild; SPgno pgnoChild; int ret; SBtreeZeroPageArg zArg; pPager = pRoot->pPager; // Allocate a new child page zArg.flags = TDB_BTREE_LEAF; zArg.pBt = pBt; ret = tdbPagerNewPage(pPager, &pgnoChild, &pChild, tdbBtreeZeroPage, &zArg); if (ret < 0) { return -1; } // Copy the root page content to the child page ret = tdbBtreeCopyPageContent(pRoot, pChild); if (ret < 0) { return -1; } pChild->nOverflow = pRoot->nOverflow; for (int i = 0; i < pChild->nOverflow; i++) { pChild->apOvfl[i] = pRoot->apOvfl[i]; pChild->aiOvfl[i] = pRoot->aiOvfl[i]; } // Reinitialize the root page zArg.flags = TDB_BTREE_ROOT; zArg.pBt = pBt; ret = tdbBtreeZeroPage(pRoot, &zArg); if (ret < 0) { return -1; } ((SBtPageHdr *)pRoot->pAmHdr)[0].rChild = pgnoChild; *ppChild = pChild; return 0; } static int tdbBtreeBalanceStep1(SBtreeBalanceHelper *pBlh) { int nCells; int i; int idxStart; int nChild; int ret; SPage *pParent; SPgno pgno; SCell *pCell; SCellDecoder cd; SBTree *pBt; pParent = pBlh->pParent; nCells = TDB_PAGE_NCELLS(pParent); nChild = nCells + 1; pBt = pBlh->pBt; // TODO: ASSERT below needs to be removed ASSERT(pParent->nOverflow == 0); ASSERT(pBlh->idx <= nCells); if (nChild < 3) { idxStart = 0; pBlh->nOld = nChild; } else { if (pBlh->idx == 0) { idxStart = 0; } else if (pBlh->idx == nCells) { idxStart = pBlh->idx - 2; } else { idxStart = pBlh->idx - 1; } pBlh->nOld = 3; } i = pBlh->nOld - 1; if (idxStart + i == nCells) { pgno = ((SBtPageHdr *)(pParent->pAmHdr))[0].rChild; } else { pCell = TDB_PAGE_CELL_AT(pParent, idxStart + i); // TODO: no need to decode the payload part, and even the kLen, vLen part // we only need the pgno part ret = tdbBtreeDecodeCell(pParent, pCell, &cd); if (ret < 0) { ASSERT(0); return -1; } pgno = cd.pgno; } for (;;) { ret = tdbPagerFetchPage(pBt->pPager, pgno, &(pBlh->pOldPages[i]), tdbBtreeInitPage, pBt); if (ret < 0) { ASSERT(0); return -1; } // Loop over if ((i--) == 0) break; { // TODO // ASSERT(0); } } return 0; } static int tdbBtreeBalanceStep2(SBtreeBalanceHelper *pBlh) { #if 0 SPage *pPage; int oidx; int cidx; int limit; SCell *pCell; for (int i = 0; i < pBlh->nOld; i++) { pPage = pBlh->pOldPages[i]; oidx = 0; cidx = 0; if (oidx < pPage->nOverflow) { limit = pPage->aiOvfl[oidx]; } else { limit = pPage->pPageHdr->nCells; } // Loop to copy each cell pointer out for (;;) { if (oidx >= pPage->nOverflow && cidx >= pPage->pPageHdr->nCells) break; if (cidx < limit) { // Get local cells pCell = TDB_PAGE_CELL_AT(pPage, cidx); } else if (cidx == limit) { // Get overflow cells pCell = pPage->apOvfl[oidx++]; if (oidx < pPage->nOverflow) { limit = pPage->aiOvfl[oidx]; } else { limit = pPage->pPageHdr->nCells; } } else { ASSERT(0); } } { // TODO: Copy divider cells here } } /* TODO */ #endif return 0; } static int tdbBtreeBalanceStep3(SBtreeBalanceHelper *pBlh) { for (int i = 0; i < pBlh->nOld; i++) { /* code */ } return 0; } static int tdbBtreeBalanceStep4(SBtreeBalanceHelper *pBlh) { // TODO return 0; } static int tdbBtreeBalanceStep5(SBtreeBalanceHelper *pBlh) { // TODO return 0; } static int tdbBtreeBalanceStep6(SBtreeBalanceHelper *pBlh) { // TODO return 0; } static int tdbBtreeBalanceNonRoot(SBTree *pBt, SPage *pParent, int idx) { int ret; SBtreeBalanceHelper blh; ASSERT(!TDB_BTREE_PAGE_IS_LEAF(TDB_PAGE_FLAGS(pParent))); blh.pBt = pBt; blh.pParent = pParent; blh.idx = idx; // Step 1: find two sibling pages and get engough info about the old pages ret = tdbBtreeBalanceStep1(&blh); if (ret < 0) { ASSERT(0); return -1; } // Step 2: Load all cells on the old page and the divider cells ret = tdbBtreeBalanceStep2(&blh); if (ret < 0) { ASSERT(0); return -1; } // Step 3: Get the number of pages needed to hold all cells ret = tdbBtreeBalanceStep3(&blh); if (ret < 0) { ASSERT(0); return -1; } // Step 4: Allocate enough new pages. Reuse old pages as much as possible ret = tdbBtreeBalanceStep4(&blh); if (ret < 0) { ASSERT(0); return -1; } // Step 5: Insert new divider cells into pParent ret = tdbBtreeBalanceStep5(&blh); if (ret < 0) { ASSERT(0); return -1; } // Step 6: Update the sibling pages ret = tdbBtreeBalanceStep6(&blh); if (ret < 0) { ASSERT(0); return -1; } { // TODO: Reset states } { // TODO: Clear resources } return 0; } static int tdbBtreeBalance(SBtCursor *pCur) { int iPage; SPage *pParent; SPage *pPage; int ret; u16 flags; u8 leaf; u8 root; // Main loop to balance the BTree for (;;) { iPage = pCur->iPage; pPage = pCur->pPage; flags = TDB_PAGE_FLAGS(pPage); leaf = TDB_BTREE_PAGE_IS_LEAF(flags); root = TDB_BTREE_PAGE_IS_ROOT(flags); // TODO: Get the page free space if not get yet // if (pPage->nFree < 0) { // if (tdbBtreeComputeFreeSpace(pPage) < 0) { // return -1; // } // } // when the page is not overflow and not too empty, the balance work // is finished. Just break out the balance loop. if (pPage->nOverflow == 0 /* TODO: && pPage->nFree <= */) { break; } if (iPage == 0) { // For the root page, only balance when the page is overfull, // ignore the case of empty if (pPage->nOverflow == 0) break; ret = tdbBtreeBalanceDeeper(pCur->pBt, pCur->pPage, &(pCur->pgStack[1])); if (ret < 0) { return -1; } pCur->idx = 0; pCur->idxStack[0] = 0; pCur->pgStack[0] = pCur->pPage; pCur->iPage = 1; pCur->pPage = pCur->pgStack[1]; } else { // Generalized balance step pParent = pCur->pgStack[iPage - 1]; ret = tdbBtreeBalanceNonRoot(pCur->pBt, pParent, pCur->idxStack[pCur->iPage - 1]); if (ret < 0) { return -1; } pCur->iPage--; pCur->pPage = pCur->pgStack[pCur->iPage]; } } return 0; } #endif #ifndef TDB_BTREE_CELL // ========================================================= static int tdbBtreeEncodePayload(SPage *pPage, u8 *pPayload, const void *pKey, int kLen, const void *pVal, int vLen, int *szPayload) { int nPayload; ASSERT(pKey != NULL); if (pVal == NULL) { vLen = 0; } nPayload = kLen + vLen; if (nPayload <= pPage->maxLocal) { // General case without overflow memcpy(pPayload, pKey, kLen); if (pVal) { memcpy(pPayload + kLen, pVal, vLen); } *szPayload = nPayload; return 0; } { // TODO: handle overflow case ASSERT(0); } return 0; } static int tdbBtreeEncodeCell(SPage *pPage, const void *pKey, int kLen, const void *pVal, int vLen, SCell *pCell, int *szCell) { u16 flags; u8 leaf; int nHeader; int nPayload; int ret; ASSERT(pPage->kLen == TDB_VARIANT_LEN || pPage->kLen == kLen); ASSERT(pPage->vLen == TDB_VARIANT_LEN || pPage->vLen == vLen); nPayload = 0; nHeader = 0; flags = TDB_PAGE_FLAGS(pPage); leaf = TDB_BTREE_PAGE_IS_LEAF(flags); // 1. Encode Header part /* Encode kLen if need */ if (pPage->kLen == TDB_VARIANT_LEN) { nHeader += tdbPutVarInt(pCell + nHeader, kLen); } /* Encode vLen if need */ if (pPage->vLen == TDB_VARIANT_LEN) { nHeader += tdbPutVarInt(pCell + nHeader, vLen); } /* Encode SPgno if interior page */ if (!leaf) { ASSERT(pPage->vLen == sizeof(SPgno)); ((SPgno *)(pCell + nHeader))[0] = ((SPgno *)pVal)[0]; nHeader = nHeader + sizeof(SPgno); } // 2. Encode payload part if (leaf) { ret = tdbBtreeEncodePayload(pPage, pCell + nHeader, pKey, kLen, pVal, vLen, &nPayload); } else { ret = tdbBtreeEncodePayload(pPage, pCell + nHeader, pKey, kLen, NULL, 0, &nPayload); } if (ret < 0) { // TODO: handle error return -1; } *szCell = nHeader + nPayload; return 0; } static int tdbBtreeDecodePayload(SPage *pPage, const u8 *pPayload, SCellDecoder *pDecoder) { int nPayload; ASSERT(pDecoder->pKey == NULL); if (pDecoder->pVal) { nPayload = pDecoder->kLen + pDecoder->vLen; } else { nPayload = pDecoder->kLen; } if (nPayload <= pPage->maxLocal) { // General case without overflow pDecoder->pKey = (void *)pPayload; if (!pDecoder->pVal) { pDecoder->pVal = (void *)(pPayload + pDecoder->kLen); } } else { // TODO: handle overflow case ASSERT(0); } return 0; } static int tdbBtreeDecodeCell(SPage *pPage, const SCell *pCell, SCellDecoder *pDecoder) { u16 flags; u8 leaf; int nHeader; int ret; nHeader = 0; flags = TDB_PAGE_FLAGS(pPage); leaf = TDB_BTREE_PAGE_IS_LEAF(flags); // Clear the state of decoder pDecoder->kLen = -1; pDecoder->pKey = NULL; pDecoder->vLen = -1; pDecoder->pVal = NULL; pDecoder->pgno = 0; // 1. Decode header part if (pPage->kLen == TDB_VARIANT_LEN) { nHeader += tdbGetVarInt(pCell + nHeader, &(pDecoder->kLen)); } else { pDecoder->kLen = pPage->kLen; } if (pPage->vLen == TDB_VARIANT_LEN) { nHeader += tdbGetVarInt(pCell + nHeader, &(pDecoder->vLen)); } else { pDecoder->vLen = pPage->vLen; } if (!leaf) { ASSERT(pPage->vLen == sizeof(SPgno)); pDecoder->pgno = ((SPgno *)(pCell + nHeader))[0]; pDecoder->pVal = (u8 *)(&(pDecoder->pgno)); nHeader = nHeader + sizeof(SPgno); } // 2. Decode payload part ret = tdbBtreeDecodePayload(pPage, pCell + nHeader, pDecoder); if (ret < 0) { return -1; } return 0; } #endif