--- title: 产品简介 description: 简要介绍 TDengine 的主要功能 toc_max_heading_level: 2 --- TDengine 是一款[开源](https://www.taosdata.com/tdengine/open_source_time-series_database)、[高性能](https://www.taosdata.com/tdengine/fast)、[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)的时序数据库(Time Series Database, TSDB)。TDengine 能被广泛运用于物联网、工业互联网、车联网、IT 运维、金融等领域。除核心的时序数据库功能外,TDengine 还提供[缓存](../develop/cache/)、[数据订阅](../develop/tmq)、[流式计算](../develop/stream)等功能,是一极简的时序数据处理平台,最大程度的减小系统设计的复杂度,降低研发和运营成本。 本章节介绍TDengine的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对TDengine有个整体的了解。 ## 主要功能 TDengine的主要功能如下: 1. 高速数据写入,除 [SQL 写入](../develop/insert-data/sql-writing)外,还支持 [Schemaless 写入](../reference/schemaless/),支持 [InfluxDB LINE 协议](../develop/insert-data/influxdb-line),[OpenTSDB Telnet](../develop/insert-data/opentsdb-telnet), [OpenTSDB JSON ](../develop/insert-data/opentsdb-json)等协议写入; 2. 第三方数据采集工具 [Telegraf](../third-party/telegraf),[Prometheus](../third-party/prometheus),[StatsD](../third-party/statsd),[collectd](../third-party/collectd),[icinga2](../third-party/icinga2), [TCollector](../third-party/tcollector), [EMQ](../third-party/emq-broker), [HiveMQ](../third-party/hive-mq-broker) 等都可以进行配置后,不用任何代码,即可将数据写入; 3. 支持[各种查询](../develop/query-data),包括聚合查询、嵌套查询、降采样查询、插值等 4. 支持[用户自定义函数](../develop/udf) 5. 支持[缓存](../develop/cache),将每张表的最后一条记录缓存起来,这样无需 Redis 6. 支持[流式计算](../develop/stream)(Stream Processing) 7. 支持[数据订阅](../develop/tmq),而且可以指定过滤条件 8. 支持[集群](../deployment/),可以通过多节点进行水平扩展,并通过多副本实现高可靠 9. 提供[命令行程序](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询 10. 提供多种数据的[导入](../operation/import)、[导出](../operation/export) 11. 支持对[TDengine 集群本身的监控](../operation/monitor) 12. 提供各种语言的[连接器](../connector): 如 C/C++, Java, Go, Node.JS, Rust, Python, C# 等 13. 支持 [REST 接口](../connector/rest-api/) 14. 支持与[ Grafana 无缝集成](../third-party/grafana) 15. 支持与 Google Data Studio 无缝集成 16. 支持 [Kubernetes 部署](../deployment/k8s) 更多细小的功能,请阅读整个文档。 ## 竞争优势 由于 TDengine 充分利用了[时序数据特点](https://www.taosdata.com/blog/2019/07/09/105.html),比如结构化、无需事务、很少删除或更新、写多读少等等,设计了全新的针对时序数据的存储引擎和计算引擎,因此与其他时序数据库相比,TDengine 有以下特点: - **[高性能](https://www.taosdata.com/tdengine/fast)**:通过创新的存储引擎设计,无论是数据写入还是查询,TDengine 的性能比通用数据库快 10 倍以上,也远超其他时序数据库,存储空间不及通用数据库的1/10。 - **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**:通过原生分布式的设计,充分利用云平台的优势,TDengine 提供了水平扩展能力,具备弹性、韧性和可观测性,支持k8s部署,可运行在公有云、私有云和混合云上。 - **[极简时序数据平台](https://www.taosdata.com/tdengine/simplified_solution_for_time-series_data_processing)**:TDengine 内建消息队列、缓存、流式计算等功能,应用无需再集成 Kafka/Redis/HBase/Spark 等软件,大幅降低系统的复杂度,降低应用开发和运营成本。 - **[分析能力](https://www.taosdata.com/tdengine/easy_data_analytics)**:支持 SQL,同时为时序数据特有的分析提供SQL扩展。通过超级表、存储计算分离、分区分片、预计算、自定义函数等技术,TDengine 具备强大的分析能力。 - **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**:无任何依赖,安装、集群几秒搞定;提供REST以及各种语言连接器,与众多第三方工具无缝集成;提供命令行程序,便于管理和即席查询;提供各种运维工具。 - **[核心开源](https://www.taosdata.com/tdengine/open_source_time-series_database)**:TDengine 的核心代码包括集群功能全部开源,截止到2022年8月1日,全球超过 135.9k 个运行实例,GitHub Star 18.7k,Fork 4.4k,社区活跃。 采用 TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。表现在几个方面: 1. 由于其超强性能,它能将系统需要的计算资源和存储资源大幅降低 2. 因为支持 SQL,能与众多第三方软件无缝集成,学习迁移成本大幅下降 3. 因为是一极简的时序数据平台,系统复杂度、研发和运营成本大幅降低 4. 因为维护简单,运营维护成本能大幅降低 ## 技术生态 在整个时序大数据平台中,TDengine 在其中扮演的角色如下: