/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This is the implementation of the page cache subsystem or "pager". ** ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. */ #include "sqliteInt.h" // #include "wal.h" // /******************* NOTES ON THE DESIGN OF THE PAGER ************************ // ** // ** This comment block describes invariants that hold when using a rollback // ** journal. These invariants do not apply for journal_mode=WAL, // ** journal_mode=MEMORY, or journal_mode=OFF. // ** // ** Within this comment block, a page is deemed to have been synced // ** automatically as soon as it is written when PRAGMA synchronous=OFF. // ** Otherwise, the page is not synced until the xSync method of the VFS // ** is called successfully on the file containing the page. // ** // ** Definition: A page of the database file is said to be "overwriteable" if // ** one or more of the following are true about the page: // ** // ** (a) The original content of the page as it was at the beginning of // ** the transaction has been written into the rollback journal and // ** synced. // ** // ** (b) The page was a freelist leaf page at the start of the transaction. // ** // ** (c) The page number is greater than the largest page that existed in // ** the database file at the start of the transaction. // ** // ** (1) A page of the database file is never overwritten unless one of the // ** following are true: // ** // ** (a) The page and all other pages on the same sector are overwriteable. // ** // ** (b) The atomic page write optimization is enabled, and the entire // ** transaction other than the update of the transaction sequence // ** number consists of a single page change. // ** // ** (2) The content of a page written into the rollback journal exactly matches // ** both the content in the database when the rollback journal was written // ** and the content in the database at the beginning of the current // ** transaction. // ** // ** (3) Writes to the database file are an integer multiple of the page size // ** in length and are aligned on a page boundary. // ** // ** (4) Reads from the database file are either aligned on a page boundary and // ** an integer multiple of the page size in length or are taken from the // ** first 100 bytes of the database file. // ** // ** (5) All writes to the database file are synced prior to the rollback journal // ** being deleted, truncated, or zeroed. // ** // ** (6) If a super-journal file is used, then all writes to the database file // ** are synced prior to the super-journal being deleted. // ** // ** Definition: Two databases (or the same database at two points it time) // ** are said to be "logically equivalent" if they give the same answer to // ** all queries. Note in particular the content of freelist leaf // ** pages can be changed arbitrarily without affecting the logical equivalence // ** of the database. // ** // ** (7) At any time, if any subset, including the empty set and the total set, // ** of the unsynced changes to a rollback journal are removed and the // ** journal is rolled back, the resulting database file will be logically // ** equivalent to the database file at the beginning of the transaction. // ** // ** (8) When a transaction is rolled back, the xTruncate method of the VFS // ** is called to restore the database file to the same size it was at // ** the beginning of the transaction. (In some VFSes, the xTruncate // ** method is a no-op, but that does not change the fact the SQLite will // ** invoke it.) // ** // ** (9) Whenever the database file is modified, at least one bit in the range // ** of bytes from 24 through 39 inclusive will be changed prior to releasing // ** the EXCLUSIVE lock, thus signaling other connections on the same // ** database to flush their caches. // ** // ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less // ** than one billion transactions. // ** // ** (11) A database file is well-formed at the beginning and at the conclusion // ** of every transaction. // ** // ** (12) An EXCLUSIVE lock is held on the database file when writing to // ** the database file. // ** // ** (13) A SHARED lock is held on the database file while reading any // ** content out of the database file. // ** // ******************************************************************************/ // /* // ** Macros for troubleshooting. Normally turned off // */ // #if 0 // int sqlite3PagerTrace=1; /* True to enable tracing */ // #define sqlite3DebugPrintf printf // #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } // #else // #define PAGERTRACE(X) // #endif // /* // ** The following two macros are used within the PAGERTRACE() macros above // ** to print out file-descriptors. // ** // ** PAGERID() takes a pointer to a Pager struct as its argument. The // ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file // ** struct as its argument. // */ // #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) // #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) // /* // ** The Pager.eState variable stores the current 'state' of a pager. A // ** pager may be in any one of the seven states shown in the following // ** state diagram. // ** // ** OPEN <------+------+ // ** | | | // ** V | | // ** +---------> READER-------+ | // ** | | | // ** | V | // ** |<-------WRITER_LOCKED------> ERROR // ** | | ^ // ** | V | // ** |<------WRITER_CACHEMOD-------->| // ** | | | // ** | V | // ** |<-------WRITER_DBMOD---------->| // ** | | | // ** | V | // ** +<------WRITER_FINISHED-------->+ // ** // ** // ** List of state transitions and the C [function] that performs each: // ** // ** OPEN -> READER [sqlite3PagerSharedLock] // ** READER -> OPEN [pager_unlock] // ** // ** READER -> WRITER_LOCKED [sqlite3PagerBegin] // ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] // ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] // ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] // ** WRITER_*** -> READER [pager_end_transaction] // ** // ** WRITER_*** -> ERROR [pager_error] // ** ERROR -> OPEN [pager_unlock] // ** // ** // ** OPEN: // ** // ** The pager starts up in this state. Nothing is guaranteed in this // ** state - the file may or may not be locked and the database size is // ** unknown. The database may not be read or written. // ** // ** * No read or write transaction is active. // ** * Any lock, or no lock at all, may be held on the database file. // ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. // ** // ** READER: // ** // ** In this state all the requirements for reading the database in // ** rollback (non-WAL) mode are met. Unless the pager is (or recently // ** was) in exclusive-locking mode, a user-level read transaction is // ** open. The database size is known in this state. // ** // ** A connection running with locking_mode=normal enters this state when // ** it opens a read-transaction on the database and returns to state // ** OPEN after the read-transaction is completed. However a connection // ** running in locking_mode=exclusive (including temp databases) remains in // ** this state even after the read-transaction is closed. The only way // ** a locking_mode=exclusive connection can transition from READER to OPEN // ** is via the ERROR state (see below). // ** // ** * A read transaction may be active (but a write-transaction cannot). // ** * A SHARED or greater lock is held on the database file. // ** * The dbSize variable may be trusted (even if a user-level read // ** transaction is not active). The dbOrigSize and dbFileSize variables // ** may not be trusted at this point. // ** * If the database is a WAL database, then the WAL connection is open. // ** * Even if a read-transaction is not open, it is guaranteed that // ** there is no hot-journal in the file-system. // ** // ** WRITER_LOCKED: // ** // ** The pager moves to this state from READER when a write-transaction // ** is first opened on the database. In WRITER_LOCKED state, all locks // ** required to start a write-transaction are held, but no actual // ** modifications to the cache or database have taken place. // ** // ** In rollback mode, a RESERVED or (if the transaction was opened with // ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when // ** moving to this state, but the journal file is not written to or opened // ** to in this state. If the transaction is committed or rolled back while // ** in WRITER_LOCKED state, all that is required is to unlock the database // ** file. // ** // ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. // ** If the connection is running with locking_mode=exclusive, an attempt // ** is made to obtain an EXCLUSIVE lock on the database file. // ** // ** * A write transaction is active. // ** * If the connection is open in rollback-mode, a RESERVED or greater // ** lock is held on the database file. // ** * If the connection is open in WAL-mode, a WAL write transaction // ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully // ** called). // ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. // ** * The contents of the pager cache have not been modified. // ** * The journal file may or may not be open. // ** * Nothing (not even the first header) has been written to the journal. // ** // ** WRITER_CACHEMOD: // ** // ** A pager moves from WRITER_LOCKED state to this state when a page is // ** first modified by the upper layer. In rollback mode the journal file // ** is opened (if it is not already open) and a header written to the // ** start of it. The database file on disk has not been modified. // ** // ** * A write transaction is active. // ** * A RESERVED or greater lock is held on the database file. // ** * The journal file is open and the first header has been written // ** to it, but the header has not been synced to disk. // ** * The contents of the page cache have been modified. // ** // ** WRITER_DBMOD: // ** // ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state // ** when it modifies the contents of the database file. WAL connections // ** never enter this state (since they do not modify the database file, // ** just the log file). // ** // ** * A write transaction is active. // ** * An EXCLUSIVE or greater lock is held on the database file. // ** * The journal file is open and the first header has been written // ** and synced to disk. // ** * The contents of the page cache have been modified (and possibly // ** written to disk). // ** // ** WRITER_FINISHED: // ** // ** It is not possible for a WAL connection to enter this state. // ** // ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD // ** state after the entire transaction has been successfully written into the // ** database file. In this state the transaction may be committed simply // ** by finalizing the journal file. Once in WRITER_FINISHED state, it is // ** not possible to modify the database further. At this point, the upper // ** layer must either commit or rollback the transaction. // ** // ** * A write transaction is active. // ** * An EXCLUSIVE or greater lock is held on the database file. // ** * All writing and syncing of journal and database data has finished. // ** If no error occurred, all that remains is to finalize the journal to // ** commit the transaction. If an error did occur, the caller will need // ** to rollback the transaction. // ** // ** ERROR: // ** // ** The ERROR state is entered when an IO or disk-full error (including // ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it // ** difficult to be sure that the in-memory pager state (cache contents, // ** db size etc.) are consistent with the contents of the file-system. // ** // ** Temporary pager files may enter the ERROR state, but in-memory pagers // ** cannot. // ** // ** For example, if an IO error occurs while performing a rollback, // ** the contents of the page-cache may be left in an inconsistent state. // ** At this point it would be dangerous to change back to READER state // ** (as usually happens after a rollback). Any subsequent readers might // ** report database corruption (due to the inconsistent cache), and if // ** they upgrade to writers, they may inadvertently corrupt the database // ** file. To avoid this hazard, the pager switches into the ERROR state // ** instead of READER following such an error. // ** // ** Once it has entered the ERROR state, any attempt to use the pager // ** to read or write data returns an error. Eventually, once all // ** outstanding transactions have been abandoned, the pager is able to // ** transition back to OPEN state, discarding the contents of the // ** page-cache and any other in-memory state at the same time. Everything // ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) // ** when a read-transaction is next opened on the pager (transitioning // ** the pager into READER state). At that point the system has recovered // ** from the error. // ** // ** Specifically, the pager jumps into the ERROR state if: // ** // ** 1. An error occurs while attempting a rollback. This happens in // ** function sqlite3PagerRollback(). // ** // ** 2. An error occurs while attempting to finalize a journal file // ** following a commit in function sqlite3PagerCommitPhaseTwo(). // ** // ** 3. An error occurs while attempting to write to the journal or // ** database file in function pagerStress() in order to free up // ** memory. // ** // ** In other cases, the error is returned to the b-tree layer. The b-tree // ** layer then attempts a rollback operation. If the error condition // ** persists, the pager enters the ERROR state via condition (1) above. // ** // ** Condition (3) is necessary because it can be triggered by a read-only // ** statement executed within a transaction. In this case, if the error // ** code were simply returned to the user, the b-tree layer would not // ** automatically attempt a rollback, as it assumes that an error in a // ** read-only statement cannot leave the pager in an internally inconsistent // ** state. // ** // ** * The Pager.errCode variable is set to something other than SQLITE_OK. // ** * There are one or more outstanding references to pages (after the // ** last reference is dropped the pager should move back to OPEN state). // ** * The pager is not an in-memory pager. // ** // ** // ** Notes: // ** // ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the // ** connection is open in WAL mode. A WAL connection is always in one // ** of the first four states. // ** // ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN // ** state. There are two exceptions: immediately after exclusive-mode has // ** been turned on (and before any read or write transactions are // ** executed), and when the pager is leaving the "error state". // ** // ** * See also: assert_pager_state(). // */ // #define PAGER_OPEN 0 // #define PAGER_READER 1 // #define PAGER_WRITER_LOCKED 2 // #define PAGER_WRITER_CACHEMOD 3 // #define PAGER_WRITER_DBMOD 4 // #define PAGER_WRITER_FINISHED 5 // #define PAGER_ERROR 6 // /* // ** The Pager.eLock variable is almost always set to one of the // ** following locking-states, according to the lock currently held on // ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. // ** This variable is kept up to date as locks are taken and released by // ** the pagerLockDb() and pagerUnlockDb() wrappers. // ** // ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY // ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not // ** the operation was successful. In these circumstances pagerLockDb() and // ** pagerUnlockDb() take a conservative approach - eLock is always updated // ** when unlocking the file, and only updated when locking the file if the // ** VFS call is successful. This way, the Pager.eLock variable may be set // ** to a less exclusive (lower) value than the lock that is actually held // ** at the system level, but it is never set to a more exclusive value. // ** // ** This is usually safe. If an xUnlock fails or appears to fail, there may // ** be a few redundant xLock() calls or a lock may be held for longer than // ** required, but nothing really goes wrong. // ** // ** The exception is when the database file is unlocked as the pager moves // ** from ERROR to OPEN state. At this point there may be a hot-journal file // ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED // ** transition, by the same pager or any other). If the call to xUnlock() // ** fails at this point and the pager is left holding an EXCLUSIVE lock, this // ** can confuse the call to xCheckReservedLock() call made later as part // ** of hot-journal detection. // ** // ** xCheckReservedLock() is defined as returning true "if there is a RESERVED // ** lock held by this process or any others". So xCheckReservedLock may // ** return true because the caller itself is holding an EXCLUSIVE lock (but // ** doesn't know it because of a previous error in xUnlock). If this happens // ** a hot-journal may be mistaken for a journal being created by an active // ** transaction in another process, causing SQLite to read from the database // ** without rolling it back. // ** // ** To work around this, if a call to xUnlock() fails when unlocking the // ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It // ** is only changed back to a real locking state after a successful call // ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition // ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK // ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE // ** lock on the database file before attempting to roll it back. See function // ** PagerSharedLock() for more detail. // ** // ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in // ** PAGER_OPEN state. // */ // #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) // /* // ** The maximum allowed sector size. 64KiB. If the xSectorsize() method // ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. // ** This could conceivably cause corruption following a power failure on // ** such a system. This is currently an undocumented limit. // */ // #define MAX_SECTOR_SIZE 0x10000 // /* // ** An instance of the following structure is allocated for each active // ** savepoint and statement transaction in the system. All such structures // ** are stored in the Pager.aSavepoint[] array, which is allocated and // ** resized using sqlite3Realloc(). // ** // ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is // ** set to 0. If a journal-header is written into the main journal while // ** the savepoint is active, then iHdrOffset is set to the byte offset // ** immediately following the last journal record written into the main // ** journal before the journal-header. This is required during savepoint // ** rollback (see pagerPlaybackSavepoint()). // */ // typedef struct PagerSavepoint PagerSavepoint; // struct PagerSavepoint { // i64 iOffset; /* Starting offset in main journal */ // i64 iHdrOffset; /* See above */ // Bitvec *pInSavepoint; /* Set of pages in this savepoint */ // Pgno nOrig; /* Original number of pages in file */ // Pgno iSubRec; /* Index of first record in sub-journal */ // int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */ // #ifndef SQLITE_OMIT_WAL // u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ // #endif // }; // /* // ** Bits of the Pager.doNotSpill flag. See further description below. // */ // #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ // #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ // #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ // /* // ** An open page cache is an instance of struct Pager. A description of // ** some of the more important member variables follows: // ** // ** eState // ** // ** The current 'state' of the pager object. See the comment and state // ** diagram above for a description of the pager state. // ** // ** eLock // ** // ** For a real on-disk database, the current lock held on the database file - // ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. // ** // ** For a temporary or in-memory database (neither of which require any // ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such // ** databases always have Pager.exclusiveMode==1, this tricks the pager // ** logic into thinking that it already has all the locks it will ever // ** need (and no reason to release them). // ** // ** In some (obscure) circumstances, this variable may also be set to // ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for // ** details. // ** // ** changeCountDone // ** // ** This boolean variable is used to make sure that the change-counter // ** (the 4-byte header field at byte offset 24 of the database file) is // ** not updated more often than necessary. // ** // ** It is set to true when the change-counter field is updated, which // ** can only happen if an exclusive lock is held on the database file. // ** It is cleared (set to false) whenever an exclusive lock is // ** relinquished on the database file. Each time a transaction is committed, // ** The changeCountDone flag is inspected. If it is true, the work of // ** updating the change-counter is omitted for the current transaction. // ** // ** This mechanism means that when running in exclusive mode, a connection // ** need only update the change-counter once, for the first transaction // ** committed. // ** // ** setSuper // ** // ** When PagerCommitPhaseOne() is called to commit a transaction, it may // ** (or may not) specify a super-journal name to be written into the // ** journal file before it is synced to disk. // ** // ** Whether or not a journal file contains a super-journal pointer affects // ** the way in which the journal file is finalized after the transaction is // ** committed or rolled back when running in "journal_mode=PERSIST" mode. // ** If a journal file does not contain a super-journal pointer, it is // ** finalized by overwriting the first journal header with zeroes. If // ** it does contain a super-journal pointer the journal file is finalized // ** by truncating it to zero bytes, just as if the connection were // ** running in "journal_mode=truncate" mode. // ** // ** Journal files that contain super-journal pointers cannot be finalized // ** simply by overwriting the first journal-header with zeroes, as the // ** super-journal pointer could interfere with hot-journal rollback of any // ** subsequently interrupted transaction that reuses the journal file. // ** // ** The flag is cleared as soon as the journal file is finalized (either // ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the // ** journal file from being successfully finalized, the setSuper flag // ** is cleared anyway (and the pager will move to ERROR state). // ** // ** doNotSpill // ** // ** This variables control the behavior of cache-spills (calls made by // ** the pcache module to the pagerStress() routine to write cached data // ** to the file-system in order to free up memory). // ** // ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, // ** writing to the database from pagerStress() is disabled altogether. // ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that // ** comes up during savepoint rollback that requires the pcache module // ** to allocate a new page to prevent the journal file from being written // ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF // ** case is a user preference. // ** // ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from // ** pagerStress() is permitted, but syncing the journal file is not. // ** This flag is set by sqlite3PagerWrite() when the file-system sector-size // ** is larger than the database page-size in order to prevent a journal sync // ** from happening in between the journalling of two pages on the same sector. // ** // ** subjInMemory // ** // ** This is a boolean variable. If true, then any required sub-journal // ** is opened as an in-memory journal file. If false, then in-memory // ** sub-journals are only used for in-memory pager files. // ** // ** This variable is updated by the upper layer each time a new // ** write-transaction is opened. // ** // ** dbSize, dbOrigSize, dbFileSize // ** // ** Variable dbSize is set to the number of pages in the database file. // ** It is valid in PAGER_READER and higher states (all states except for // ** OPEN and ERROR). // ** // ** dbSize is set based on the size of the database file, which may be // ** larger than the size of the database (the value stored at offset // ** 28 of the database header by the btree). If the size of the file // ** is not an integer multiple of the page-size, the value stored in // ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). // ** Except, any file that is greater than 0 bytes in size is considered // ** to have at least one page. (i.e. a 1KB file with 2K page-size leads // ** to dbSize==1). // ** // ** During a write-transaction, if pages with page-numbers greater than // ** dbSize are modified in the cache, dbSize is updated accordingly. // ** Similarly, if the database is truncated using PagerTruncateImage(), // ** dbSize is updated. // ** // ** Variables dbOrigSize and dbFileSize are valid in states // ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize // ** variable at the start of the transaction. It is used during rollback, // ** and to determine whether or not pages need to be journalled before // ** being modified. // ** // ** Throughout a write-transaction, dbFileSize contains the size of // ** the file on disk in pages. It is set to a copy of dbSize when the // ** write-transaction is first opened, and updated when VFS calls are made // ** to write or truncate the database file on disk. // ** // ** The only reason the dbFileSize variable is required is to suppress // ** unnecessary calls to xTruncate() after committing a transaction. If, // ** when a transaction is committed, the dbFileSize variable indicates // ** that the database file is larger than the database image (Pager.dbSize), // ** pager_truncate() is called. The pager_truncate() call uses xFilesize() // ** to measure the database file on disk, and then truncates it if required. // ** dbFileSize is not used when rolling back a transaction. In this case // ** pager_truncate() is called unconditionally (which means there may be // ** a call to xFilesize() that is not strictly required). In either case, // ** pager_truncate() may cause the file to become smaller or larger. // ** // ** dbHintSize // ** // ** The dbHintSize variable is used to limit the number of calls made to // ** the VFS xFileControl(FCNTL_SIZE_HINT) method. // ** // ** dbHintSize is set to a copy of the dbSize variable when a // ** write-transaction is opened (at the same time as dbFileSize and // ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, // ** dbHintSize is increased to the number of pages that correspond to the // ** size-hint passed to the method call. See pager_write_pagelist() for // ** details. // ** // ** errCode // ** // ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It // ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode // ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX // ** sub-codes. // ** // ** syncFlags, walSyncFlags // ** // ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). // ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode // ** and contains the flags used to sync the checkpoint operations in the // ** lower two bits, and sync flags used for transaction commits in the WAL // ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags // ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct // ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note // ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced // ** meaning that the 0x04 and 0x08 bits are both zero. // */ // struct Pager { // sqlite3_vfs *pVfs; /* OS functions to use for IO */ // u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ // u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ // u8 useJournal; /* Use a rollback journal on this file */ // u8 noSync; /* Do not sync the journal if true */ // u8 fullSync; /* Do extra syncs of the journal for robustness */ // u8 extraSync; /* sync directory after journal delete */ // u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ // u8 walSyncFlags; /* See description above */ // u8 tempFile; /* zFilename is a temporary or immutable file */ // u8 noLock; /* Do not lock (except in WAL mode) */ // u8 readOnly; /* True for a read-only database */ // u8 memDb; /* True to inhibit all file I/O */ // u8 memVfs; /* VFS-implemented memory database */ // /************************************************************************** // ** The following block contains those class members that change during // ** routine operation. Class members not in this block are either fixed // ** when the pager is first created or else only change when there is a // ** significant mode change (such as changing the page_size, locking_mode, // ** or the journal_mode). From another view, these class members describe // ** the "state" of the pager, while other class members describe the // ** "configuration" of the pager. // */ // u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ // u8 eLock; /* Current lock held on database file */ // u8 changeCountDone; /* Set after incrementing the change-counter */ // u8 setSuper; /* Super-jrnl name is written into jrnl */ // u8 doNotSpill; /* Do not spill the cache when non-zero */ // u8 subjInMemory; /* True to use in-memory sub-journals */ // u8 bUseFetch; /* True to use xFetch() */ // u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ // Pgno dbSize; /* Number of pages in the database */ // Pgno dbOrigSize; /* dbSize before the current transaction */ // Pgno dbFileSize; /* Number of pages in the database file */ // Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ // int errCode; /* One of several kinds of errors */ // int nRec; /* Pages journalled since last j-header written */ // u32 cksumInit; /* Quasi-random value added to every checksum */ // u32 nSubRec; /* Number of records written to sub-journal */ // Bitvec *pInJournal; /* One bit for each page in the database file */ // sqlite3_file *fd; /* File descriptor for database */ // sqlite3_file *jfd; /* File descriptor for main journal */ // sqlite3_file *sjfd; /* File descriptor for sub-journal */ // i64 journalOff; /* Current write offset in the journal file */ // i64 journalHdr; /* Byte offset to previous journal header */ // sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ // PagerSavepoint *aSavepoint; /* Array of active savepoints */ // int nSavepoint; /* Number of elements in aSavepoint[] */ // u32 iDataVersion; /* Changes whenever database content changes */ // char dbFileVers[16]; /* Changes whenever database file changes */ // int nMmapOut; /* Number of mmap pages currently outstanding */ // sqlite3_int64 szMmap; /* Desired maximum mmap size */ // PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ // /* // ** End of the routinely-changing class members // ***************************************************************************/ // u16 nExtra; /* Add this many bytes to each in-memory page */ // i16 nReserve; /* Number of unused bytes at end of each page */ // u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ // u32 sectorSize; /* Assumed sector size during rollback */ // Pgno mxPgno; /* Maximum allowed size of the database */ // i64 pageSize; /* Number of bytes in a page */ // i64 journalSizeLimit; /* Size limit for persistent journal files */ // char *zFilename; /* Name of the database file */ // char *zJournal; /* Name of the journal file */ // int (*xBusyHandler)(void*); /* Function to call when busy */ // void *pBusyHandlerArg; /* Context argument for xBusyHandler */ // int aStat[4]; /* Total cache hits, misses, writes, spills */ // #ifdef SQLITE_TEST // int nRead; /* Database pages read */ // #endif // void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ // int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ // char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ // PCache *pPCache; /* Pointer to page cache object */ // #ifndef SQLITE_OMIT_WAL // Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ // char *zWal; /* File name for write-ahead log */ // #endif // }; // /* // ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains // ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS // ** or CACHE_WRITE to sqlite3_db_status(). // */ // #define PAGER_STAT_HIT 0 // #define PAGER_STAT_MISS 1 // #define PAGER_STAT_WRITE 2 // #define PAGER_STAT_SPILL 3 // /* // ** The following global variables hold counters used for // ** testing purposes only. These variables do not exist in // ** a non-testing build. These variables are not thread-safe. // */ // #ifdef SQLITE_TEST // int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ // int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ // int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ // # define PAGER_INCR(v) v++ // #else // # define PAGER_INCR(v) // #endif // /* // ** Journal files begin with the following magic string. The data // ** was obtained from /dev/random. It is used only as a sanity check. // ** // ** Since version 2.8.0, the journal format contains additional sanity // ** checking information. If the power fails while the journal is being // ** written, semi-random garbage data might appear in the journal // ** file after power is restored. If an attempt is then made // ** to roll the journal back, the database could be corrupted. The additional // ** sanity checking data is an attempt to discover the garbage in the // ** journal and ignore it. // ** // ** The sanity checking information for the new journal format consists // ** of a 32-bit checksum on each page of data. The checksum covers both // ** the page number and the pPager->pageSize bytes of data for the page. // ** This cksum is initialized to a 32-bit random value that appears in the // ** journal file right after the header. The random initializer is important, // ** because garbage data that appears at the end of a journal is likely // ** data that was once in other files that have now been deleted. If the // ** garbage data came from an obsolete journal file, the checksums might // ** be correct. But by initializing the checksum to random value which // ** is different for every journal, we minimize that risk. // */ // static const unsigned char aJournalMagic[] = { // 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, // }; // /* // ** The size of the of each page record in the journal is given by // ** the following macro. // */ // #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) // /* // ** The journal header size for this pager. This is usually the same // ** size as a single disk sector. See also setSectorSize(). // */ // #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) // /* // ** The macro MEMDB is true if we are dealing with an in-memory database. // ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, // ** the value of MEMDB will be a constant and the compiler will optimize // ** out code that would never execute. // */ // #ifdef SQLITE_OMIT_MEMORYDB // # define MEMDB 0 // #else // # define MEMDB pPager->memDb // #endif // /* // ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch // ** interfaces to access the database using memory-mapped I/O. // */ // #if SQLITE_MAX_MMAP_SIZE>0 // # define USEFETCH(x) ((x)->bUseFetch) // #else // # define USEFETCH(x) 0 // #endif // /* // ** The argument to this macro is a file descriptor (type sqlite3_file*). // ** Return 0 if it is not open, or non-zero (but not 1) if it is. // ** // ** This is so that expressions can be written as: // ** // ** if( isOpen(pPager->jfd) ){ ... // ** // ** instead of // ** // ** if( pPager->jfd->pMethods ){ ... // */ // #define isOpen(pFd) ((pFd)->pMethods!=0) // #ifdef SQLITE_DIRECT_OVERFLOW_READ // /* // ** Return true if page pgno can be read directly from the database file // ** by the b-tree layer. This is the case if: // ** // ** * the database file is open, // ** * there are no dirty pages in the cache, and // ** * the desired page is not currently in the wal file. // */ // int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ // if( pPager->fd->pMethods==0 ) return 0; // if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; // #ifndef SQLITE_OMIT_WAL // if( pPager->pWal ){ // u32 iRead = 0; // int rc; // rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); // return (rc==SQLITE_OK && iRead==0); // } // #endif // return 1; // } // #endif // #ifndef SQLITE_OMIT_WAL // # define pagerUseWal(x) ((x)->pWal!=0) // #else // # define pagerUseWal(x) 0 // # define pagerRollbackWal(x) 0 // # define pagerWalFrames(v,w,x,y) 0 // # define pagerOpenWalIfPresent(z) SQLITE_OK // # define pagerBeginReadTransaction(z) SQLITE_OK // #endif // #ifndef NDEBUG // /* // ** Usage: // ** // ** assert( assert_pager_state(pPager) ); // ** // ** This function runs many asserts to try to find inconsistencies in // ** the internal state of the Pager object. // */ // static int assert_pager_state(Pager *p){ // Pager *pPager = p; // /* State must be valid. */ // assert( p->eState==PAGER_OPEN // || p->eState==PAGER_READER // || p->eState==PAGER_WRITER_LOCKED // || p->eState==PAGER_WRITER_CACHEMOD // || p->eState==PAGER_WRITER_DBMOD // || p->eState==PAGER_WRITER_FINISHED // || p->eState==PAGER_ERROR // ); // /* Regardless of the current state, a temp-file connection always behaves // ** as if it has an exclusive lock on the database file. It never updates // ** the change-counter field, so the changeCountDone flag is always set. // */ // assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); // assert( p->tempFile==0 || pPager->changeCountDone ); // /* If the useJournal flag is clear, the journal-mode must be "OFF". // ** And if the journal-mode is "OFF", the journal file must not be open. // */ // assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); // assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); // /* Check that MEMDB implies noSync. And an in-memory journal. Since // ** this means an in-memory pager performs no IO at all, it cannot encounter // ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing // ** a journal file. (although the in-memory journal implementation may // ** return SQLITE_IOERR_NOMEM while the journal file is being written). It // ** is therefore not possible for an in-memory pager to enter the ERROR // ** state. // */ // if( MEMDB ){ // assert( !isOpen(p->fd) ); // assert( p->noSync ); // assert( p->journalMode==PAGER_JOURNALMODE_OFF // || p->journalMode==PAGER_JOURNALMODE_MEMORY // ); // assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); // assert( pagerUseWal(p)==0 ); // } // /* If changeCountDone is set, a RESERVED lock or greater must be held // ** on the file. // */ // assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); // assert( p->eLock!=PENDING_LOCK ); // switch( p->eState ){ // case PAGER_OPEN: // assert( !MEMDB ); // assert( pPager->errCode==SQLITE_OK ); // assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); // break; // case PAGER_READER: // assert( pPager->errCode==SQLITE_OK ); // assert( p->eLock!=UNKNOWN_LOCK ); // assert( p->eLock>=SHARED_LOCK ); // break; // case PAGER_WRITER_LOCKED: // assert( p->eLock!=UNKNOWN_LOCK ); // assert( pPager->errCode==SQLITE_OK ); // if( !pagerUseWal(pPager) ){ // assert( p->eLock>=RESERVED_LOCK ); // } // assert( pPager->dbSize==pPager->dbOrigSize ); // assert( pPager->dbOrigSize==pPager->dbFileSize ); // assert( pPager->dbOrigSize==pPager->dbHintSize ); // assert( pPager->setSuper==0 ); // break; // case PAGER_WRITER_CACHEMOD: // assert( p->eLock!=UNKNOWN_LOCK ); // assert( pPager->errCode==SQLITE_OK ); // if( !pagerUseWal(pPager) ){ // /* It is possible that if journal_mode=wal here that neither the // ** journal file nor the WAL file are open. This happens during // ** a rollback transaction that switches from journal_mode=off // ** to journal_mode=wal. // */ // assert( p->eLock>=RESERVED_LOCK ); // assert( isOpen(p->jfd) // || p->journalMode==PAGER_JOURNALMODE_OFF // || p->journalMode==PAGER_JOURNALMODE_WAL // ); // } // assert( pPager->dbOrigSize==pPager->dbFileSize ); // assert( pPager->dbOrigSize==pPager->dbHintSize ); // break; // case PAGER_WRITER_DBMOD: // assert( p->eLock==EXCLUSIVE_LOCK ); // assert( pPager->errCode==SQLITE_OK ); // assert( !pagerUseWal(pPager) ); // assert( p->eLock>=EXCLUSIVE_LOCK ); // assert( isOpen(p->jfd) // || p->journalMode==PAGER_JOURNALMODE_OFF // || p->journalMode==PAGER_JOURNALMODE_WAL // || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) // ); // assert( pPager->dbOrigSize<=pPager->dbHintSize ); // break; // case PAGER_WRITER_FINISHED: // assert( p->eLock==EXCLUSIVE_LOCK ); // assert( pPager->errCode==SQLITE_OK ); // assert( !pagerUseWal(pPager) ); // assert( isOpen(p->jfd) // || p->journalMode==PAGER_JOURNALMODE_OFF // || p->journalMode==PAGER_JOURNALMODE_WAL // || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) // ); // break; // case PAGER_ERROR: // /* There must be at least one outstanding reference to the pager if // ** in ERROR state. Otherwise the pager should have already dropped // ** back to OPEN state. // */ // assert( pPager->errCode!=SQLITE_OK ); // assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); // break; // } // return 1; // } // #endif /* ifndef NDEBUG */ // #ifdef SQLITE_DEBUG // /* // ** Return a pointer to a human readable string in a static buffer // ** containing the state of the Pager object passed as an argument. This // ** is intended to be used within debuggers. For example, as an alternative // ** to "print *pPager" in gdb: // ** // ** (gdb) printf "%s", print_pager_state(pPager) // ** // ** This routine has external linkage in order to suppress compiler warnings // ** about an unused function. It is enclosed within SQLITE_DEBUG and so does // ** not appear in normal builds. // */ // char *print_pager_state(Pager *p){ // static char zRet[1024]; // sqlite3_snprintf(1024, zRet, // "Filename: %s\n" // "State: %s errCode=%d\n" // "Lock: %s\n" // "Locking mode: locking_mode=%s\n" // "Journal mode: journal_mode=%s\n" // "Backing store: tempFile=%d memDb=%d useJournal=%d\n" // "Journal: journalOff=%lld journalHdr=%lld\n" // "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" // , p->zFilename // , p->eState==PAGER_OPEN ? "OPEN" : // p->eState==PAGER_READER ? "READER" : // p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : // p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : // p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : // p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : // p->eState==PAGER_ERROR ? "ERROR" : "?error?" // , (int)p->errCode // , p->eLock==NO_LOCK ? "NO_LOCK" : // p->eLock==RESERVED_LOCK ? "RESERVED" : // p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : // p->eLock==SHARED_LOCK ? "SHARED" : // p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" // , p->exclusiveMode ? "exclusive" : "normal" // , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : // p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : // p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : // p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : // p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : // p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" // , (int)p->tempFile, (int)p->memDb, (int)p->useJournal // , p->journalOff, p->journalHdr // , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize // ); // return zRet; // } // #endif // /* Forward references to the various page getters */ // static int getPageNormal(Pager*,Pgno,DbPage**,int); // static int getPageError(Pager*,Pgno,DbPage**,int); // #if SQLITE_MAX_MMAP_SIZE>0 // static int getPageMMap(Pager*,Pgno,DbPage**,int); // #endif // /* // ** Set the Pager.xGet method for the appropriate routine used to fetch // ** content from the pager. // */ // static void setGetterMethod(Pager *pPager){ // if( pPager->errCode ){ // pPager->xGet = getPageError; // #if SQLITE_MAX_MMAP_SIZE>0 // }else if( USEFETCH(pPager) ){ // pPager->xGet = getPageMMap; // #endif /* SQLITE_MAX_MMAP_SIZE>0 */ // }else{ // pPager->xGet = getPageNormal; // } // } // /* // ** Return true if it is necessary to write page *pPg into the sub-journal. // ** A page needs to be written into the sub-journal if there exists one // ** or more open savepoints for which: // ** // ** * The page-number is less than or equal to PagerSavepoint.nOrig, and // ** * The bit corresponding to the page-number is not set in // ** PagerSavepoint.pInSavepoint. // */ // static int subjRequiresPage(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // PagerSavepoint *p; // Pgno pgno = pPg->pgno; // int i; // for(i=0; inSavepoint; i++){ // p = &pPager->aSavepoint[i]; // if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ // for(i=i+1; inSavepoint; i++){ // pPager->aSavepoint[i].bTruncateOnRelease = 0; // } // return 1; // } // } // return 0; // } // #ifdef SQLITE_DEBUG // /* // ** Return true if the page is already in the journal file. // */ // static int pageInJournal(Pager *pPager, PgHdr *pPg){ // return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); // } // #endif // /* // ** Read a 32-bit integer from the given file descriptor. Store the integer // ** that is read in *pRes. Return SQLITE_OK if everything worked, or an // ** error code is something goes wrong. // ** // ** All values are stored on disk as big-endian. // */ // static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ // unsigned char ac[4]; // int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); // if( rc==SQLITE_OK ){ // *pRes = sqlite3Get4byte(ac); // } // return rc; // } // /* // ** Write a 32-bit integer into a string buffer in big-endian byte order. // */ // #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) // /* // ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK // ** on success or an error code is something goes wrong. // */ // static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ // char ac[4]; // put32bits(ac, val); // return sqlite3OsWrite(fd, ac, 4, offset); // } // /* // ** Unlock the database file to level eLock, which must be either NO_LOCK // ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() // ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. // ** // ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is // ** called, do not modify it. See the comment above the #define of // ** UNKNOWN_LOCK for an explanation of this. // */ // static int pagerUnlockDb(Pager *pPager, int eLock){ // int rc = SQLITE_OK; // assert( !pPager->exclusiveMode || pPager->eLock==eLock ); // assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); // assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); // if( isOpen(pPager->fd) ){ // assert( pPager->eLock>=eLock ); // rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); // if( pPager->eLock!=UNKNOWN_LOCK ){ // pPager->eLock = (u8)eLock; // } // IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) // } // pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ // return rc; // } // /* // ** Lock the database file to level eLock, which must be either SHARED_LOCK, // ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the // ** Pager.eLock variable to the new locking state. // ** // ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is // ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. // ** See the comment above the #define of UNKNOWN_LOCK for an explanation // ** of this. // */ // static int pagerLockDb(Pager *pPager, int eLock){ // int rc = SQLITE_OK; // assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); // if( pPager->eLockeLock==UNKNOWN_LOCK ){ // rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); // if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ // pPager->eLock = (u8)eLock; // IOTRACE(("LOCK %p %d\n", pPager, eLock)) // } // } // return rc; // } // /* // ** This function determines whether or not the atomic-write or // ** atomic-batch-write optimizations can be used with this pager. The // ** atomic-write optimization can be used if: // ** // ** (a) the value returned by OsDeviceCharacteristics() indicates that // ** a database page may be written atomically, and // ** (b) the value returned by OsSectorSize() is less than or equal // ** to the page size. // ** // ** If it can be used, then the value returned is the size of the journal // ** file when it contains rollback data for exactly one page. // ** // ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() // ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is // ** returned in this case. // ** // ** If neither optimization can be used, 0 is returned. // */ // static int jrnlBufferSize(Pager *pPager){ // assert( !MEMDB ); // #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ // || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) // int dc; /* Device characteristics */ // assert( isOpen(pPager->fd) ); // dc = sqlite3OsDeviceCharacteristics(pPager->fd); // #else // UNUSED_PARAMETER(pPager); // #endif // #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE // if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ // return -1; // } // #endif // #ifdef SQLITE_ENABLE_ATOMIC_WRITE // { // int nSector = pPager->sectorSize; // int szPage = pPager->pageSize; // assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); // assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); // if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ // return 0; // } // } // return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); // #endif // return 0; // } // /* // ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking // ** on the cache using a hash function. This is used for testing // ** and debugging only. // */ // #ifdef SQLITE_CHECK_PAGES // /* // ** Return a 32-bit hash of the page data for pPage. // */ // static u32 pager_datahash(int nByte, unsigned char *pData){ // u32 hash = 0; // int i; // for(i=0; ipPager->pageSize, (unsigned char *)pPage->pData); // } // static void pager_set_pagehash(PgHdr *pPage){ // pPage->pageHash = pager_pagehash(pPage); // } // /* // ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES // ** is defined, and NDEBUG is not defined, an assert() statement checks // ** that the page is either dirty or still matches the calculated page-hash. // */ // #define CHECK_PAGE(x) checkPage(x) // static void checkPage(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // assert( pPager->eState!=PAGER_ERROR ); // assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); // } // #else // #define pager_datahash(X,Y) 0 // #define pager_pagehash(X) 0 // #define pager_set_pagehash(X) // #define CHECK_PAGE(x) // #endif /* SQLITE_CHECK_PAGES */ // /* // ** When this is called the journal file for pager pPager must be open. // ** This function attempts to read a super-journal file name from the // ** end of the file and, if successful, copies it into memory supplied // ** by the caller. See comments above writeSuperJournal() for the format // ** used to store a super-journal file name at the end of a journal file. // ** // ** zSuper must point to a buffer of at least nSuper bytes allocated by // ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is // ** enough space to write the super-journal name). If the super-journal // ** name in the journal is longer than nSuper bytes (including a // ** nul-terminator), then this is handled as if no super-journal name // ** were present in the journal. // ** // ** If a super-journal file name is present at the end of the journal // ** file, then it is copied into the buffer pointed to by zSuper. A // ** nul-terminator byte is appended to the buffer following the // ** super-journal file name. // ** // ** If it is determined that no super-journal file name is present // ** zSuper[0] is set to 0 and SQLITE_OK returned. // ** // ** If an error occurs while reading from the journal file, an SQLite // ** error code is returned. // */ // static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){ // int rc; /* Return code */ // u32 len; /* Length in bytes of super-journal name */ // i64 szJ; /* Total size in bytes of journal file pJrnl */ // u32 cksum; /* MJ checksum value read from journal */ // u32 u; /* Unsigned loop counter */ // unsigned char aMagic[8]; /* A buffer to hold the magic header */ // zSuper[0] = '\0'; // if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) // || szJ<16 // || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) // || len>=nSuper // || len>szJ-16 // || len==0 // || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) // || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) // || memcmp(aMagic, aJournalMagic, 8) // || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len)) // ){ // return rc; // } // /* See if the checksum matches the super-journal name */ // for(u=0; ujournalOff, assuming a sector // ** size of pPager->sectorSize bytes. // ** // ** i.e for a sector size of 512: // ** // ** Pager.journalOff Return value // ** --------------------------------------- // ** 0 0 // ** 512 512 // ** 100 512 // ** 2000 2048 // ** // */ // static i64 journalHdrOffset(Pager *pPager){ // i64 offset = 0; // i64 c = pPager->journalOff; // if( c ){ // offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); // } // assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); // assert( offset>=c ); // assert( (offset-c)jfd) ); // assert( !sqlite3JournalIsInMemory(pPager->jfd) ); // if( pPager->journalOff ){ // const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ // IOTRACE(("JZEROHDR %p\n", pPager)) // if( doTruncate || iLimit==0 ){ // rc = sqlite3OsTruncate(pPager->jfd, 0); // }else{ // static const char zeroHdr[28] = {0}; // rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); // } // if( rc==SQLITE_OK && !pPager->noSync ){ // rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); // } // /* At this point the transaction is committed but the write lock // ** is still held on the file. If there is a size limit configured for // ** the persistent journal and the journal file currently consumes more // ** space than that limit allows for, truncate it now. There is no need // ** to sync the file following this operation. // */ // if( rc==SQLITE_OK && iLimit>0 ){ // i64 sz; // rc = sqlite3OsFileSize(pPager->jfd, &sz); // if( rc==SQLITE_OK && sz>iLimit ){ // rc = sqlite3OsTruncate(pPager->jfd, iLimit); // } // } // } // return rc; // } // /* // ** The journal file must be open when this routine is called. A journal // ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the // ** current location. // ** // ** The format for the journal header is as follows: // ** - 8 bytes: Magic identifying journal format. // ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. // ** - 4 bytes: Random number used for page hash. // ** - 4 bytes: Initial database page count. // ** - 4 bytes: Sector size used by the process that wrote this journal. // ** - 4 bytes: Database page size. // ** // ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. // */ // static int writeJournalHdr(Pager *pPager){ // int rc = SQLITE_OK; /* Return code */ // char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ // u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ // u32 nWrite; /* Bytes of header sector written */ // int ii; /* Loop counter */ // assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ // if( nHeader>JOURNAL_HDR_SZ(pPager) ){ // nHeader = JOURNAL_HDR_SZ(pPager); // } // /* If there are active savepoints and any of them were created // ** since the most recent journal header was written, update the // ** PagerSavepoint.iHdrOffset fields now. // */ // for(ii=0; iinSavepoint; ii++){ // if( pPager->aSavepoint[ii].iHdrOffset==0 ){ // pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; // } // } // pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); // /* // ** Write the nRec Field - the number of page records that follow this // ** journal header. Normally, zero is written to this value at this time. // ** After the records are added to the journal (and the journal synced, // ** if in full-sync mode), the zero is overwritten with the true number // ** of records (see syncJournal()). // ** // ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When // ** reading the journal this value tells SQLite to assume that the // ** rest of the journal file contains valid page records. This assumption // ** is dangerous, as if a failure occurred whilst writing to the journal // ** file it may contain some garbage data. There are two scenarios // ** where this risk can be ignored: // ** // ** * When the pager is in no-sync mode. Corruption can follow a // ** power failure in this case anyway. // ** // ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees // ** that garbage data is never appended to the journal file. // */ // assert( isOpen(pPager->fd) || pPager->noSync ); // if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) // || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) // ){ // memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); // put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); // }else{ // memset(zHeader, 0, sizeof(aJournalMagic)+4); // } // /* The random check-hash initializer */ // sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); // put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); // /* The initial database size */ // put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); // /* The assumed sector size for this process */ // put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); // /* The page size */ // put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); // /* Initializing the tail of the buffer is not necessary. Everything // ** works find if the following memset() is omitted. But initializing // ** the memory prevents valgrind from complaining, so we are willing to // ** take the performance hit. // */ // memset(&zHeader[sizeof(aJournalMagic)+20], 0, // nHeader-(sizeof(aJournalMagic)+20)); // /* In theory, it is only necessary to write the 28 bytes that the // ** journal header consumes to the journal file here. Then increment the // ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next // ** record is written to the following sector (leaving a gap in the file // ** that will be implicitly filled in by the OS). // ** // ** However it has been discovered that on some systems this pattern can // ** be significantly slower than contiguously writing data to the file, // ** even if that means explicitly writing data to the block of // ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what // ** is done. // ** // ** The loop is required here in case the sector-size is larger than the // ** database page size. Since the zHeader buffer is only Pager.pageSize // ** bytes in size, more than one call to sqlite3OsWrite() may be required // ** to populate the entire journal header sector. // */ // for(nWrite=0; rc==SQLITE_OK&&nWritejournalHdr, nHeader)) // rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); // assert( pPager->journalHdr <= pPager->journalOff ); // pPager->journalOff += nHeader; // } // return rc; // } // /* // ** The journal file must be open when this is called. A journal header file // ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal // ** file. The current location in the journal file is given by // ** pPager->journalOff. See comments above function writeJournalHdr() for // ** a description of the journal header format. // ** // ** If the header is read successfully, *pNRec is set to the number of // ** page records following this header and *pDbSize is set to the size of the // ** database before the transaction began, in pages. Also, pPager->cksumInit // ** is set to the value read from the journal header. SQLITE_OK is returned // ** in this case. // ** // ** If the journal header file appears to be corrupted, SQLITE_DONE is // ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes // ** cannot be read from the journal file an error code is returned. // */ // static int readJournalHdr( // Pager *pPager, /* Pager object */ // int isHot, // i64 journalSize, /* Size of the open journal file in bytes */ // u32 *pNRec, /* OUT: Value read from the nRec field */ // u32 *pDbSize /* OUT: Value of original database size field */ // ){ // int rc; /* Return code */ // unsigned char aMagic[8]; /* A buffer to hold the magic header */ // i64 iHdrOff; /* Offset of journal header being read */ // assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ // /* Advance Pager.journalOff to the start of the next sector. If the // ** journal file is too small for there to be a header stored at this // ** point, return SQLITE_DONE. // */ // pPager->journalOff = journalHdrOffset(pPager); // if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ // return SQLITE_DONE; // } // iHdrOff = pPager->journalOff; // /* Read in the first 8 bytes of the journal header. If they do not match // ** the magic string found at the start of each journal header, return // ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, // ** proceed. // */ // if( isHot || iHdrOff!=pPager->journalHdr ){ // rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); // if( rc ){ // return rc; // } // if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ // return SQLITE_DONE; // } // } // /* Read the first three 32-bit fields of the journal header: The nRec // ** field, the checksum-initializer and the database size at the start // ** of the transaction. Return an error code if anything goes wrong. // */ // if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) // || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) // || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) // ){ // return rc; // } // if( pPager->journalOff==0 ){ // u32 iPageSize; /* Page-size field of journal header */ // u32 iSectorSize; /* Sector-size field of journal header */ // /* Read the page-size and sector-size journal header fields. */ // if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) // || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) // ){ // return rc; // } // /* Versions of SQLite prior to 3.5.8 set the page-size field of the // ** journal header to zero. In this case, assume that the Pager.pageSize // ** variable is already set to the correct page size. // */ // if( iPageSize==0 ){ // iPageSize = pPager->pageSize; // } // /* Check that the values read from the page-size and sector-size fields // ** are within range. To be 'in range', both values need to be a power // ** of two greater than or equal to 512 or 32, and not greater than their // ** respective compile time maximum limits. // */ // if( iPageSize<512 || iSectorSize<32 // || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE // || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 // ){ // /* If the either the page-size or sector-size in the journal-header is // ** invalid, then the process that wrote the journal-header must have // ** crashed before the header was synced. In this case stop reading // ** the journal file here. // */ // return SQLITE_DONE; // } // /* Update the page-size to match the value read from the journal. // ** Use a testcase() macro to make sure that malloc failure within // ** PagerSetPagesize() is tested. // */ // rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); // testcase( rc!=SQLITE_OK ); // /* Update the assumed sector-size to match the value used by // ** the process that created this journal. If this journal was // ** created by a process other than this one, then this routine // ** is being called from within pager_playback(). The local value // ** of Pager.sectorSize is restored at the end of that routine. // */ // pPager->sectorSize = iSectorSize; // } // pPager->journalOff += JOURNAL_HDR_SZ(pPager); // return rc; // } // /* // ** Write the supplied super-journal name into the journal file for pager // ** pPager at the current location. The super-journal name must be the last // ** thing written to a journal file. If the pager is in full-sync mode, the // ** journal file descriptor is advanced to the next sector boundary before // ** anything is written. The format is: // ** // ** + 4 bytes: PAGER_MJ_PGNO. // ** + N bytes: super-journal filename in utf-8. // ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). // ** + 4 bytes: super-journal name checksum. // ** + 8 bytes: aJournalMagic[]. // ** // ** The super-journal page checksum is the sum of the bytes in thesuper-journal // ** name, where each byte is interpreted as a signed 8-bit integer. // ** // ** If zSuper is a NULL pointer (occurs for a single database transaction), // ** this call is a no-op. // */ // static int writeSuperJournal(Pager *pPager, const char *zSuper){ // int rc; /* Return code */ // int nSuper; /* Length of string zSuper */ // i64 iHdrOff; /* Offset of header in journal file */ // i64 jrnlSize; /* Size of journal file on disk */ // u32 cksum = 0; /* Checksum of string zSuper */ // assert( pPager->setSuper==0 ); // assert( !pagerUseWal(pPager) ); // if( !zSuper // || pPager->journalMode==PAGER_JOURNALMODE_MEMORY // || !isOpen(pPager->jfd) // ){ // return SQLITE_OK; // } // pPager->setSuper = 1; // assert( pPager->journalHdr <= pPager->journalOff ); // /* Calculate the length in bytes and the checksum of zSuper */ // for(nSuper=0; zSuper[nSuper]; nSuper++){ // cksum += zSuper[nSuper]; // } // /* If in full-sync mode, advance to the next disk sector before writing // ** the super-journal name. This is in case the previous page written to // ** the journal has already been synced. // */ // if( pPager->fullSync ){ // pPager->journalOff = journalHdrOffset(pPager); // } // iHdrOff = pPager->journalOff; // /* Write the super-journal data to the end of the journal file. If // ** an error occurs, return the error code to the caller. // */ // if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) // || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4))) // || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper))) // || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum))) // || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, // iHdrOff+4+nSuper+8))) // ){ // return rc; // } // pPager->journalOff += (nSuper+20); // /* If the pager is in peristent-journal mode, then the physical // ** journal-file may extend past the end of the super-journal name // ** and 8 bytes of magic data just written to the file. This is // ** dangerous because the code to rollback a hot-journal file // ** will not be able to find the super-journal name to determine // ** whether or not the journal is hot. // ** // ** Easiest thing to do in this scenario is to truncate the journal // ** file to the required size. // */ // if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) // && jrnlSize>pPager->journalOff // ){ // rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); // } // return rc; // } // /* // ** Discard the entire contents of the in-memory page-cache. // */ // static void pager_reset(Pager *pPager){ // pPager->iDataVersion++; // sqlite3BackupRestart(pPager->pBackup); // sqlite3PcacheClear(pPager->pPCache); // } // /* // ** Return the pPager->iDataVersion value // */ // u32 sqlite3PagerDataVersion(Pager *pPager){ // return pPager->iDataVersion; // } // /* // ** Free all structures in the Pager.aSavepoint[] array and set both // ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal // ** if it is open and the pager is not in exclusive mode. // */ // static void releaseAllSavepoints(Pager *pPager){ // int ii; /* Iterator for looping through Pager.aSavepoint */ // for(ii=0; iinSavepoint; ii++){ // sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); // } // if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ // sqlite3OsClose(pPager->sjfd); // } // sqlite3_free(pPager->aSavepoint); // pPager->aSavepoint = 0; // pPager->nSavepoint = 0; // pPager->nSubRec = 0; // } // /* // ** Set the bit number pgno in the PagerSavepoint.pInSavepoint // ** bitvecs of all open savepoints. Return SQLITE_OK if successful // ** or SQLITE_NOMEM if a malloc failure occurs. // */ // static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ // int ii; /* Loop counter */ // int rc = SQLITE_OK; /* Result code */ // for(ii=0; iinSavepoint; ii++){ // PagerSavepoint *p = &pPager->aSavepoint[ii]; // if( pgno<=p->nOrig ){ // rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); // testcase( rc==SQLITE_NOMEM ); // assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); // } // } // return rc; // } // /* // ** This function is a no-op if the pager is in exclusive mode and not // ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN // ** state. // ** // ** If the pager is not in exclusive-access mode, the database file is // ** completely unlocked. If the file is unlocked and the file-system does // ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is // ** closed (if it is open). // ** // ** If the pager is in ERROR state when this function is called, the // ** contents of the pager cache are discarded before switching back to // ** the OPEN state. Regardless of whether the pager is in exclusive-mode // ** or not, any journal file left in the file-system will be treated // ** as a hot-journal and rolled back the next time a read-transaction // ** is opened (by this or by any other connection). // */ // static void pager_unlock(Pager *pPager){ // assert( pPager->eState==PAGER_READER // || pPager->eState==PAGER_OPEN // || pPager->eState==PAGER_ERROR // ); // sqlite3BitvecDestroy(pPager->pInJournal); // pPager->pInJournal = 0; // releaseAllSavepoints(pPager); // if( pagerUseWal(pPager) ){ // assert( !isOpen(pPager->jfd) ); // sqlite3WalEndReadTransaction(pPager->pWal); // pPager->eState = PAGER_OPEN; // }else if( !pPager->exclusiveMode ){ // int rc; /* Error code returned by pagerUnlockDb() */ // int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; // /* If the operating system support deletion of open files, then // ** close the journal file when dropping the database lock. Otherwise // ** another connection with journal_mode=delete might delete the file // ** out from under us. // */ // assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); // assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); // assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); // assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); // assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); // assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); // if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) // || 1!=(pPager->journalMode & 5) // ){ // sqlite3OsClose(pPager->jfd); // } // /* If the pager is in the ERROR state and the call to unlock the database // ** file fails, set the current lock to UNKNOWN_LOCK. See the comment // ** above the #define for UNKNOWN_LOCK for an explanation of why this // ** is necessary. // */ // rc = pagerUnlockDb(pPager, NO_LOCK); // if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ // pPager->eLock = UNKNOWN_LOCK; // } // /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here // ** without clearing the error code. This is intentional - the error // ** code is cleared and the cache reset in the block below. // */ // assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); // pPager->eState = PAGER_OPEN; // } // /* If Pager.errCode is set, the contents of the pager cache cannot be // ** trusted. Now that there are no outstanding references to the pager, // ** it can safely move back to PAGER_OPEN state. This happens in both // ** normal and exclusive-locking mode. // */ // assert( pPager->errCode==SQLITE_OK || !MEMDB ); // if( pPager->errCode ){ // if( pPager->tempFile==0 ){ // pager_reset(pPager); // pPager->changeCountDone = 0; // pPager->eState = PAGER_OPEN; // }else{ // pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); // } // if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); // pPager->errCode = SQLITE_OK; // setGetterMethod(pPager); // } // pPager->journalOff = 0; // pPager->journalHdr = 0; // pPager->setSuper = 0; // } // /* // ** This function is called whenever an IOERR or FULL error that requires // ** the pager to transition into the ERROR state may ahve occurred. // ** The first argument is a pointer to the pager structure, the second // ** the error-code about to be returned by a pager API function. The // ** value returned is a copy of the second argument to this function. // ** // ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the // ** IOERR sub-codes, the pager enters the ERROR state and the error code // ** is stored in Pager.errCode. While the pager remains in the ERROR state, // ** all major API calls on the Pager will immediately return Pager.errCode. // ** // ** The ERROR state indicates that the contents of the pager-cache // ** cannot be trusted. This state can be cleared by completely discarding // ** the contents of the pager-cache. If a transaction was active when // ** the persistent error occurred, then the rollback journal may need // ** to be replayed to restore the contents of the database file (as if // ** it were a hot-journal). // */ // static int pager_error(Pager *pPager, int rc){ // int rc2 = rc & 0xff; // assert( rc==SQLITE_OK || !MEMDB ); // assert( // pPager->errCode==SQLITE_FULL || // pPager->errCode==SQLITE_OK || // (pPager->errCode & 0xff)==SQLITE_IOERR // ); // if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ // pPager->errCode = rc; // pPager->eState = PAGER_ERROR; // setGetterMethod(pPager); // } // return rc; // } // static int pager_truncate(Pager *pPager, Pgno nPage); // /* // ** The write transaction open on pPager is being committed (bCommit==1) // ** or rolled back (bCommit==0). // ** // ** Return TRUE if and only if all dirty pages should be flushed to disk. // ** // ** Rules: // ** // ** * For non-TEMP databases, always sync to disk. This is necessary // ** for transactions to be durable. // ** // ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing // ** file has been created already (via a spill on pagerStress()) and // ** when the number of dirty pages in memory exceeds 25% of the total // ** cache size. // */ // static int pagerFlushOnCommit(Pager *pPager, int bCommit){ // if( pPager->tempFile==0 ) return 1; // if( !bCommit ) return 0; // if( !isOpen(pPager->fd) ) return 0; // return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); // } // /* // ** This routine ends a transaction. A transaction is usually ended by // ** either a COMMIT or a ROLLBACK operation. This routine may be called // ** after rollback of a hot-journal, or if an error occurs while opening // ** the journal file or writing the very first journal-header of a // ** database transaction. // ** // ** This routine is never called in PAGER_ERROR state. If it is called // ** in PAGER_NONE or PAGER_SHARED state and the lock held is less // ** exclusive than a RESERVED lock, it is a no-op. // ** // ** Otherwise, any active savepoints are released. // ** // ** If the journal file is open, then it is "finalized". Once a journal // ** file has been finalized it is not possible to use it to roll back a // ** transaction. Nor will it be considered to be a hot-journal by this // ** or any other database connection. Exactly how a journal is finalized // ** depends on whether or not the pager is running in exclusive mode and // ** the current journal-mode (Pager.journalMode value), as follows: // ** // ** journalMode==MEMORY // ** Journal file descriptor is simply closed. This destroys an // ** in-memory journal. // ** // ** journalMode==TRUNCATE // ** Journal file is truncated to zero bytes in size. // ** // ** journalMode==PERSIST // ** The first 28 bytes of the journal file are zeroed. This invalidates // ** the first journal header in the file, and hence the entire journal // ** file. An invalid journal file cannot be rolled back. // ** // ** journalMode==DELETE // ** The journal file is closed and deleted using sqlite3OsDelete(). // ** // ** If the pager is running in exclusive mode, this method of finalizing // ** the journal file is never used. Instead, if the journalMode is // ** DELETE and the pager is in exclusive mode, the method described under // ** journalMode==PERSIST is used instead. // ** // ** After the journal is finalized, the pager moves to PAGER_READER state. // ** If running in non-exclusive rollback mode, the lock on the file is // ** downgraded to a SHARED_LOCK. // ** // ** SQLITE_OK is returned if no error occurs. If an error occurs during // ** any of the IO operations to finalize the journal file or unlock the // ** database then the IO error code is returned to the user. If the // ** operation to finalize the journal file fails, then the code still // ** tries to unlock the database file if not in exclusive mode. If the // ** unlock operation fails as well, then the first error code related // ** to the first error encountered (the journal finalization one) is // ** returned. // */ // static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){ // int rc = SQLITE_OK; /* Error code from journal finalization operation */ // int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ // /* Do nothing if the pager does not have an open write transaction // ** or at least a RESERVED lock. This function may be called when there // ** is no write-transaction active but a RESERVED or greater lock is // ** held under two circumstances: // ** // ** 1. After a successful hot-journal rollback, it is called with // ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. // ** // ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE // ** lock switches back to locking_mode=normal and then executes a // ** read-transaction, this function is called with eState==PAGER_READER // ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. // */ // assert( assert_pager_state(pPager) ); // assert( pPager->eState!=PAGER_ERROR ); // if( pPager->eStateeLockjfd) || pPager->pInJournal==0 // || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) // ); // if( isOpen(pPager->jfd) ){ // assert( !pagerUseWal(pPager) ); // /* Finalize the journal file. */ // if( sqlite3JournalIsInMemory(pPager->jfd) ){ // /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ // sqlite3OsClose(pPager->jfd); // }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ // if( pPager->journalOff==0 ){ // rc = SQLITE_OK; // }else{ // rc = sqlite3OsTruncate(pPager->jfd, 0); // if( rc==SQLITE_OK && pPager->fullSync ){ // /* Make sure the new file size is written into the inode right away. // ** Otherwise the journal might resurrect following a power loss and // ** cause the last transaction to roll back. See // ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 // */ // rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); // } // } // pPager->journalOff = 0; // }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST // || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) // ){ // rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile); // pPager->journalOff = 0; // }else{ // /* This branch may be executed with Pager.journalMode==MEMORY if // ** a hot-journal was just rolled back. In this case the journal // ** file should be closed and deleted. If this connection writes to // ** the database file, it will do so using an in-memory journal. // */ // int bDelete = !pPager->tempFile; // assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); // assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE // || pPager->journalMode==PAGER_JOURNALMODE_MEMORY // || pPager->journalMode==PAGER_JOURNALMODE_WAL // ); // sqlite3OsClose(pPager->jfd); // if( bDelete ){ // rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); // } // } // } // #ifdef SQLITE_CHECK_PAGES // sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); // if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ // PgHdr *p = sqlite3PagerLookup(pPager, 1); // if( p ){ // p->pageHash = 0; // sqlite3PagerUnrefNotNull(p); // } // } // #endif // sqlite3BitvecDestroy(pPager->pInJournal); // pPager->pInJournal = 0; // pPager->nRec = 0; // if( rc==SQLITE_OK ){ // if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ // sqlite3PcacheCleanAll(pPager->pPCache); // }else{ // sqlite3PcacheClearWritable(pPager->pPCache); // } // sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); // } // if( pagerUseWal(pPager) ){ // /* Drop the WAL write-lock, if any. Also, if the connection was in // ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE // ** lock held on the database file. // */ // rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); // assert( rc2==SQLITE_OK ); // }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ // /* This branch is taken when committing a transaction in rollback-journal // ** mode if the database file on disk is larger than the database image. // ** At this point the journal has been finalized and the transaction // ** successfully committed, but the EXCLUSIVE lock is still held on the // ** file. So it is safe to truncate the database file to its minimum // ** required size. */ // assert( pPager->eLock==EXCLUSIVE_LOCK ); // rc = pager_truncate(pPager, pPager->dbSize); // } // if( rc==SQLITE_OK && bCommit ){ // rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); // if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; // } // if( !pPager->exclusiveMode // && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) // ){ // rc2 = pagerUnlockDb(pPager, SHARED_LOCK); // } // pPager->eState = PAGER_READER; // pPager->setSuper = 0; // return (rc==SQLITE_OK?rc2:rc); // } // /* // ** Execute a rollback if a transaction is active and unlock the // ** database file. // ** // ** If the pager has already entered the ERROR state, do not attempt // ** the rollback at this time. Instead, pager_unlock() is called. The // ** call to pager_unlock() will discard all in-memory pages, unlock // ** the database file and move the pager back to OPEN state. If this // ** means that there is a hot-journal left in the file-system, the next // ** connection to obtain a shared lock on the pager (which may be this one) // ** will roll it back. // ** // ** If the pager has not already entered the ERROR state, but an IO or // ** malloc error occurs during a rollback, then this will itself cause // ** the pager to enter the ERROR state. Which will be cleared by the // ** call to pager_unlock(), as described above. // */ // static void pagerUnlockAndRollback(Pager *pPager){ // if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ // assert( assert_pager_state(pPager) ); // if( pPager->eState>=PAGER_WRITER_LOCKED ){ // sqlite3BeginBenignMalloc(); // sqlite3PagerRollback(pPager); // sqlite3EndBenignMalloc(); // }else if( !pPager->exclusiveMode ){ // assert( pPager->eState==PAGER_READER ); // pager_end_transaction(pPager, 0, 0); // } // } // pager_unlock(pPager); // } // /* // ** Parameter aData must point to a buffer of pPager->pageSize bytes // ** of data. Compute and return a checksum based ont the contents of the // ** page of data and the current value of pPager->cksumInit. // ** // ** This is not a real checksum. It is really just the sum of the // ** random initial value (pPager->cksumInit) and every 200th byte // ** of the page data, starting with byte offset (pPager->pageSize%200). // ** Each byte is interpreted as an 8-bit unsigned integer. // ** // ** Changing the formula used to compute this checksum results in an // ** incompatible journal file format. // ** // ** If journal corruption occurs due to a power failure, the most likely // ** scenario is that one end or the other of the record will be changed. // ** It is much less likely that the two ends of the journal record will be // ** correct and the middle be corrupt. Thus, this "checksum" scheme, // ** though fast and simple, catches the mostly likely kind of corruption. // */ // static u32 pager_cksum(Pager *pPager, const u8 *aData){ // u32 cksum = pPager->cksumInit; /* Checksum value to return */ // int i = pPager->pageSize-200; /* Loop counter */ // while( i>0 ){ // cksum += aData[i]; // i -= 200; // } // return cksum; // } // /* // ** Read a single page from either the journal file (if isMainJrnl==1) or // ** from the sub-journal (if isMainJrnl==0) and playback that page. // ** The page begins at offset *pOffset into the file. The *pOffset // ** value is increased to the start of the next page in the journal. // ** // ** The main rollback journal uses checksums - the statement journal does // ** not. // ** // ** If the page number of the page record read from the (sub-)journal file // ** is greater than the current value of Pager.dbSize, then playback is // ** skipped and SQLITE_OK is returned. // ** // ** If pDone is not NULL, then it is a record of pages that have already // ** been played back. If the page at *pOffset has already been played back // ** (if the corresponding pDone bit is set) then skip the playback. // ** Make sure the pDone bit corresponding to the *pOffset page is set // ** prior to returning. // ** // ** If the page record is successfully read from the (sub-)journal file // ** and played back, then SQLITE_OK is returned. If an IO error occurs // ** while reading the record from the (sub-)journal file or while writing // ** to the database file, then the IO error code is returned. If data // ** is successfully read from the (sub-)journal file but appears to be // ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in // ** two circumstances: // ** // ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or // ** * If the record is being rolled back from the main journal file // ** and the checksum field does not match the record content. // ** // ** Neither of these two scenarios are possible during a savepoint rollback. // ** // ** If this is a savepoint rollback, then memory may have to be dynamically // ** allocated by this function. If this is the case and an allocation fails, // ** SQLITE_NOMEM is returned. // */ // static int pager_playback_one_page( // Pager *pPager, /* The pager being played back */ // i64 *pOffset, /* Offset of record to playback */ // Bitvec *pDone, /* Bitvec of pages already played back */ // int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ // int isSavepnt /* True for a savepoint rollback */ // ){ // int rc; // PgHdr *pPg; /* An existing page in the cache */ // Pgno pgno; /* The page number of a page in journal */ // u32 cksum; /* Checksum used for sanity checking */ // char *aData; /* Temporary storage for the page */ // sqlite3_file *jfd; /* The file descriptor for the journal file */ // int isSynced; /* True if journal page is synced */ // assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ // assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ // assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ // assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ // aData = pPager->pTmpSpace; // assert( aData ); /* Temp storage must have already been allocated */ // assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); // /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction // ** or savepoint rollback done at the request of the caller) or this is // ** a hot-journal rollback. If it is a hot-journal rollback, the pager // ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback // ** only reads from the main journal, not the sub-journal. // */ // assert( pPager->eState>=PAGER_WRITER_CACHEMOD // || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) // ); // assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); // /* Read the page number and page data from the journal or sub-journal // ** file. Return an error code to the caller if an IO error occurs. // */ // jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; // rc = read32bits(jfd, *pOffset, &pgno); // if( rc!=SQLITE_OK ) return rc; // rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); // if( rc!=SQLITE_OK ) return rc; // *pOffset += pPager->pageSize + 4 + isMainJrnl*4; // /* Sanity checking on the page. This is more important that I originally // ** thought. If a power failure occurs while the journal is being written, // ** it could cause invalid data to be written into the journal. We need to // ** detect this invalid data (with high probability) and ignore it. // */ // if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ // assert( !isSavepnt ); // return SQLITE_DONE; // } // if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ // return SQLITE_OK; // } // if( isMainJrnl ){ // rc = read32bits(jfd, (*pOffset)-4, &cksum); // if( rc ) return rc; // if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ // return SQLITE_DONE; // } // } // /* If this page has already been played back before during the current // ** rollback, then don't bother to play it back again. // */ // if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ // return rc; // } // /* When playing back page 1, restore the nReserve setting // */ // if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ // pPager->nReserve = ((u8*)aData)[20]; // } // /* If the pager is in CACHEMOD state, then there must be a copy of this // ** page in the pager cache. In this case just update the pager cache, // ** not the database file. The page is left marked dirty in this case. // ** // ** An exception to the above rule: If the database is in no-sync mode // ** and a page is moved during an incremental vacuum then the page may // ** not be in the pager cache. Later: if a malloc() or IO error occurs // ** during a Movepage() call, then the page may not be in the cache // ** either. So the condition described in the above paragraph is not // ** assert()able. // ** // ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the // ** pager cache if it exists and the main file. The page is then marked // ** not dirty. Since this code is only executed in PAGER_OPEN state for // ** a hot-journal rollback, it is guaranteed that the page-cache is empty // ** if the pager is in OPEN state. // ** // ** Ticket #1171: The statement journal might contain page content that is // ** different from the page content at the start of the transaction. // ** This occurs when a page is changed prior to the start of a statement // ** then changed again within the statement. When rolling back such a // ** statement we must not write to the original database unless we know // ** for certain that original page contents are synced into the main rollback // ** journal. Otherwise, a power loss might leave modified data in the // ** database file without an entry in the rollback journal that can // ** restore the database to its original form. Two conditions must be // ** met before writing to the database files. (1) the database must be // ** locked. (2) we know that the original page content is fully synced // ** in the main journal either because the page is not in cache or else // ** the page is marked as needSync==0. // ** // ** 2008-04-14: When attempting to vacuum a corrupt database file, it // ** is possible to fail a statement on a database that does not yet exist. // ** Do not attempt to write if database file has never been opened. // */ // if( pagerUseWal(pPager) ){ // pPg = 0; // }else{ // pPg = sqlite3PagerLookup(pPager, pgno); // } // assert( pPg || !MEMDB ); // assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); // PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", // PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), // (isMainJrnl?"main-journal":"sub-journal") // )); // if( isMainJrnl ){ // isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); // }else{ // isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); // } // if( isOpen(pPager->fd) // && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) // && isSynced // ){ // i64 ofst = (pgno-1)*(i64)pPager->pageSize; // testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); // assert( !pagerUseWal(pPager) ); // /* Write the data read from the journal back into the database file. // ** This is usually safe even for an encrypted database - as the data // ** was encrypted before it was written to the journal file. The exception // ** is if the data was just read from an in-memory sub-journal. In that // ** case it must be encrypted here before it is copied into the database // ** file. */ // rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); // if( pgno>pPager->dbFileSize ){ // pPager->dbFileSize = pgno; // } // if( pPager->pBackup ){ // sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); // } // }else if( !isMainJrnl && pPg==0 ){ // /* If this is a rollback of a savepoint and data was not written to // ** the database and the page is not in-memory, there is a potential // ** problem. When the page is next fetched by the b-tree layer, it // ** will be read from the database file, which may or may not be // ** current. // ** // ** There are a couple of different ways this can happen. All are quite // ** obscure. When running in synchronous mode, this can only happen // ** if the page is on the free-list at the start of the transaction, then // ** populated, then moved using sqlite3PagerMovepage(). // ** // ** The solution is to add an in-memory page to the cache containing // ** the data just read from the sub-journal. Mark the page as dirty // ** and if the pager requires a journal-sync, then mark the page as // ** requiring a journal-sync before it is written. // */ // assert( isSavepnt ); // assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); // pPager->doNotSpill |= SPILLFLAG_ROLLBACK; // rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); // assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); // pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; // if( rc!=SQLITE_OK ) return rc; // sqlite3PcacheMakeDirty(pPg); // } // if( pPg ){ // /* No page should ever be explicitly rolled back that is in use, except // ** for page 1 which is held in use in order to keep the lock on the // ** database active. However such a page may be rolled back as a result // ** of an internal error resulting in an automatic call to // ** sqlite3PagerRollback(). // */ // void *pData; // pData = pPg->pData; // memcpy(pData, (u8*)aData, pPager->pageSize); // pPager->xReiniter(pPg); // /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But // ** that call was dangerous and had no detectable benefit since the cache // ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so // ** has been removed. */ // pager_set_pagehash(pPg); // /* If this was page 1, then restore the value of Pager.dbFileVers. // ** Do this before any decoding. */ // if( pgno==1 ){ // memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); // } // sqlite3PcacheRelease(pPg); // } // return rc; // } // /* // ** Parameter zSuper is the name of a super-journal file. A single journal // ** file that referred to the super-journal file has just been rolled back. // ** This routine checks if it is possible to delete the super-journal file, // ** and does so if it is. // ** // ** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not // ** available for use within this function. // ** // ** When a super-journal file is created, it is populated with the names // ** of all of its child journals, one after another, formatted as utf-8 // ** encoded text. The end of each child journal file is marked with a // ** nul-terminator byte (0x00). i.e. the entire contents of a super-journal // ** file for a transaction involving two databases might be: // ** // ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" // ** // ** A super-journal file may only be deleted once all of its child // ** journals have been rolled back. // ** // ** This function reads the contents of the super-journal file into // ** memory and loops through each of the child journal names. For // ** each child journal, it checks if: // ** // ** * if the child journal exists, and if so // ** * if the child journal contains a reference to super-journal // ** file zSuper // ** // ** If a child journal can be found that matches both of the criteria // ** above, this function returns without doing anything. Otherwise, if // ** no such child journal can be found, file zSuper is deleted from // ** the file-system using sqlite3OsDelete(). // ** // ** If an IO error within this function, an error code is returned. This // ** function allocates memory by calling sqlite3Malloc(). If an allocation // ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors // ** occur, SQLITE_OK is returned. // ** // ** TODO: This function allocates a single block of memory to load // ** the entire contents of the super-journal file. This could be // ** a couple of kilobytes or so - potentially larger than the page // ** size. // */ // static int pager_delsuper(Pager *pPager, const char *zSuper){ // sqlite3_vfs *pVfs = pPager->pVfs; // int rc; /* Return code */ // sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */ // sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ // char *zSuperJournal = 0; /* Contents of super-journal file */ // i64 nSuperJournal; /* Size of super-journal file */ // char *zJournal; /* Pointer to one journal within MJ file */ // char *zSuperPtr; /* Space to hold super-journal filename */ // char *zFree = 0; /* Free this buffer */ // int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */ // /* Allocate space for both the pJournal and pSuper file descriptors. // ** If successful, open the super-journal file for reading. // */ // pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); // if( !pSuper ){ // rc = SQLITE_NOMEM; // pJournal = 0; // }else{ // const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); // rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0); // pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile); // } // if( rc!=SQLITE_OK ) goto delsuper_out; // /* Load the entire super-journal file into space obtained from // ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain // ** sufficient space (in zSuperPtr) to hold the names of super-journal // ** files extracted from regular rollback-journals. // */ // rc = sqlite3OsFileSize(pSuper, &nSuperJournal); // if( rc!=SQLITE_OK ) goto delsuper_out; // nSuperPtr = pVfs->mxPathname+1; // zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2); // if( !zFree ){ // rc = SQLITE_NOMEM; // goto delsuper_out; // } // zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0; // zSuperJournal = &zFree[4]; // zSuperPtr = &zSuperJournal[nSuperJournal+2]; // rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0); // if( rc!=SQLITE_OK ) goto delsuper_out; // zSuperJournal[nSuperJournal] = 0; // zSuperJournal[nSuperJournal+1] = 0; // zJournal = zSuperJournal; // while( (zJournal-zSuperJournal)pageSize bytes). // ** If the file on disk is currently larger than nPage pages, then use the VFS // ** xTruncate() method to truncate it. // ** // ** Or, it might be the case that the file on disk is smaller than // ** nPage pages. Some operating system implementations can get confused if // ** you try to truncate a file to some size that is larger than it // ** currently is, so detect this case and write a single zero byte to // ** the end of the new file instead. // ** // ** If successful, return SQLITE_OK. If an IO error occurs while modifying // ** the database file, return the error code to the caller. // */ // static int pager_truncate(Pager *pPager, Pgno nPage){ // int rc = SQLITE_OK; // assert( pPager->eState!=PAGER_ERROR ); // assert( pPager->eState!=PAGER_READER ); // if( isOpen(pPager->fd) // && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) // ){ // i64 currentSize, newSize; // int szPage = pPager->pageSize; // assert( pPager->eLock==EXCLUSIVE_LOCK ); // /* TODO: Is it safe to use Pager.dbFileSize here? */ // rc = sqlite3OsFileSize(pPager->fd, ¤tSize); // newSize = szPage*(i64)nPage; // if( rc==SQLITE_OK && currentSize!=newSize ){ // if( currentSize>newSize ){ // rc = sqlite3OsTruncate(pPager->fd, newSize); // }else if( (currentSize+szPage)<=newSize ){ // char *pTmp = pPager->pTmpSpace; // memset(pTmp, 0, szPage); // testcase( (newSize-szPage) == currentSize ); // testcase( (newSize-szPage) > currentSize ); // rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); // } // if( rc==SQLITE_OK ){ // pPager->dbFileSize = nPage; // } // } // } // return rc; // } // /* // ** Return a sanitized version of the sector-size of OS file pFile. The // ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. // */ // int sqlite3SectorSize(sqlite3_file *pFile){ // int iRet = sqlite3OsSectorSize(pFile); // if( iRet<32 ){ // iRet = 512; // }else if( iRet>MAX_SECTOR_SIZE ){ // assert( MAX_SECTOR_SIZE>=512 ); // iRet = MAX_SECTOR_SIZE; // } // return iRet; // } // /* // ** Set the value of the Pager.sectorSize variable for the given // ** pager based on the value returned by the xSectorSize method // ** of the open database file. The sector size will be used // ** to determine the size and alignment of journal header and // ** super-journal pointers within created journal files. // ** // ** For temporary files the effective sector size is always 512 bytes. // ** // ** Otherwise, for non-temporary files, the effective sector size is // ** the value returned by the xSectorSize() method rounded up to 32 if // ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it // ** is greater than MAX_SECTOR_SIZE. // ** // ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set // ** the effective sector size to its minimum value (512). The purpose of // ** pPager->sectorSize is to define the "blast radius" of bytes that // ** might change if a crash occurs while writing to a single byte in // ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero // ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector // ** size. For backwards compatibility of the rollback journal file format, // ** we cannot reduce the effective sector size below 512. // */ // static void setSectorSize(Pager *pPager){ // assert( isOpen(pPager->fd) || pPager->tempFile ); // if( pPager->tempFile // || (sqlite3OsDeviceCharacteristics(pPager->fd) & // SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 // ){ // /* Sector size doesn't matter for temporary files. Also, the file // ** may not have been opened yet, in which case the OsSectorSize() // ** call will segfault. */ // pPager->sectorSize = 512; // }else{ // pPager->sectorSize = sqlite3SectorSize(pPager->fd); // } // } // /* // ** Playback the journal and thus restore the database file to // ** the state it was in before we started making changes. // ** // ** The journal file format is as follows: // ** // ** (1) 8 byte prefix. A copy of aJournalMagic[]. // ** (2) 4 byte big-endian integer which is the number of valid page records // ** in the journal. If this value is 0xffffffff, then compute the // ** number of page records from the journal size. // ** (3) 4 byte big-endian integer which is the initial value for the // ** sanity checksum. // ** (4) 4 byte integer which is the number of pages to truncate the // ** database to during a rollback. // ** (5) 4 byte big-endian integer which is the sector size. The header // ** is this many bytes in size. // ** (6) 4 byte big-endian integer which is the page size. // ** (7) zero padding out to the next sector size. // ** (8) Zero or more pages instances, each as follows: // ** + 4 byte page number. // ** + pPager->pageSize bytes of data. // ** + 4 byte checksum // ** // ** When we speak of the journal header, we mean the first 7 items above. // ** Each entry in the journal is an instance of the 8th item. // ** // ** Call the value from the second bullet "nRec". nRec is the number of // ** valid page entries in the journal. In most cases, you can compute the // ** value of nRec from the size of the journal file. But if a power // ** failure occurred while the journal was being written, it could be the // ** case that the size of the journal file had already been increased but // ** the extra entries had not yet made it safely to disk. In such a case, // ** the value of nRec computed from the file size would be too large. For // ** that reason, we always use the nRec value in the header. // ** // ** If the nRec value is 0xffffffff it means that nRec should be computed // ** from the file size. This value is used when the user selects the // ** no-sync option for the journal. A power failure could lead to corruption // ** in this case. But for things like temporary table (which will be // ** deleted when the power is restored) we don't care. // ** // ** If the file opened as the journal file is not a well-formed // ** journal file then all pages up to the first corrupted page are rolled // ** back (or no pages if the journal header is corrupted). The journal file // ** is then deleted and SQLITE_OK returned, just as if no corruption had // ** been encountered. // ** // ** If an I/O or malloc() error occurs, the journal-file is not deleted // ** and an error code is returned. // ** // ** The isHot parameter indicates that we are trying to rollback a journal // ** that might be a hot journal. Or, it could be that the journal is // ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. // ** If the journal really is hot, reset the pager cache prior rolling // ** back any content. If the journal is merely persistent, no reset is // ** needed. // */ // static int pager_playback(Pager *pPager, int isHot){ // sqlite3_vfs *pVfs = pPager->pVfs; // i64 szJ; /* Size of the journal file in bytes */ // u32 nRec; /* Number of Records in the journal */ // u32 u; /* Unsigned loop counter */ // Pgno mxPg = 0; /* Size of the original file in pages */ // int rc; /* Result code of a subroutine */ // int res = 1; /* Value returned by sqlite3OsAccess() */ // char *zSuper = 0; /* Name of super-journal file if any */ // int needPagerReset; /* True to reset page prior to first page rollback */ // int nPlayback = 0; /* Total number of pages restored from journal */ // u32 savedPageSize = pPager->pageSize; // /* Figure out how many records are in the journal. Abort early if // ** the journal is empty. // */ // assert( isOpen(pPager->jfd) ); // rc = sqlite3OsFileSize(pPager->jfd, &szJ); // if( rc!=SQLITE_OK ){ // goto end_playback; // } // /* Read the super-journal name from the journal, if it is present. // ** If a super-journal file name is specified, but the file is not // ** present on disk, then the journal is not hot and does not need to be // ** played back. // ** // ** TODO: Technically the following is an error because it assumes that // ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that // ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, // ** mxPathname is 512, which is the same as the minimum allowable value // ** for pageSize. // */ // zSuper = pPager->pTmpSpace; // rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); // if( rc==SQLITE_OK && zSuper[0] ){ // rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); // } // zSuper = 0; // if( rc!=SQLITE_OK || !res ){ // goto end_playback; // } // pPager->journalOff = 0; // needPagerReset = isHot; // /* This loop terminates either when a readJournalHdr() or // ** pager_playback_one_page() call returns SQLITE_DONE or an IO error // ** occurs. // */ // while( 1 ){ // /* Read the next journal header from the journal file. If there are // ** not enough bytes left in the journal file for a complete header, or // ** it is corrupted, then a process must have failed while writing it. // ** This indicates nothing more needs to be rolled back. // */ // rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); // if( rc!=SQLITE_OK ){ // if( rc==SQLITE_DONE ){ // rc = SQLITE_OK; // } // goto end_playback; // } // /* If nRec is 0xffffffff, then this journal was created by a process // ** working in no-sync mode. This means that the rest of the journal // ** file consists of pages, there are no more journal headers. Compute // ** the value of nRec based on this assumption. // */ // if( nRec==0xffffffff ){ // assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); // nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); // } // /* If nRec is 0 and this rollback is of a transaction created by this // ** process and if this is the final header in the journal, then it means // ** that this part of the journal was being filled but has not yet been // ** synced to disk. Compute the number of pages based on the remaining // ** size of the file. // ** // ** The third term of the test was added to fix ticket #2565. // ** When rolling back a hot journal, nRec==0 always means that the next // ** chunk of the journal contains zero pages to be rolled back. But // ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in // ** the journal, it means that the journal might contain additional // ** pages that need to be rolled back and that the number of pages // ** should be computed based on the journal file size. // */ // if( nRec==0 && !isHot && // pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ // nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); // } // /* If this is the first header read from the journal, truncate the // ** database file back to its original size. // */ // if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ // rc = pager_truncate(pPager, mxPg); // if( rc!=SQLITE_OK ){ // goto end_playback; // } // pPager->dbSize = mxPg; // } // /* Copy original pages out of the journal and back into the // ** database file and/or page cache. // */ // for(u=0; ujournalOff,0,1,0); // if( rc==SQLITE_OK ){ // nPlayback++; // }else{ // if( rc==SQLITE_DONE ){ // pPager->journalOff = szJ; // break; // }else if( rc==SQLITE_IOERR_SHORT_READ ){ // /* If the journal has been truncated, simply stop reading and // ** processing the journal. This might happen if the journal was // ** not completely written and synced prior to a crash. In that // ** case, the database should have never been written in the // ** first place so it is OK to simply abandon the rollback. */ // rc = SQLITE_OK; // goto end_playback; // }else{ // /* If we are unable to rollback, quit and return the error // ** code. This will cause the pager to enter the error state // ** so that no further harm will be done. Perhaps the next // ** process to come along will be able to rollback the database. // */ // goto end_playback; // } // } // } // } // /*NOTREACHED*/ // assert( 0 ); // end_playback: // if( rc==SQLITE_OK ){ // rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); // } // /* Following a rollback, the database file should be back in its original // ** state prior to the start of the transaction, so invoke the // ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the // ** assertion that the transaction counter was modified. // */ // #ifdef SQLITE_DEBUG // sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); // #endif // /* If this playback is happening automatically as a result of an IO or // ** malloc error that occurred after the change-counter was updated but // ** before the transaction was committed, then the change-counter // ** modification may just have been reverted. If this happens in exclusive // ** mode, then subsequent transactions performed by the connection will not // ** update the change-counter at all. This may lead to cache inconsistency // ** problems for other processes at some point in the future. So, just // ** in case this has happened, clear the changeCountDone flag now. // */ // pPager->changeCountDone = pPager->tempFile; // if( rc==SQLITE_OK ){ // /* Leave 4 bytes of space before the super-journal filename in memory. // ** This is because it may end up being passed to sqlite3OsOpen(), in // ** which case it requires 4 0x00 bytes in memory immediately before // ** the filename. */ // zSuper = &pPager->pTmpSpace[4]; // rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); // testcase( rc!=SQLITE_OK ); // } // if( rc==SQLITE_OK // && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) // ){ // rc = sqlite3PagerSync(pPager, 0); // } // if( rc==SQLITE_OK ){ // rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0); // testcase( rc!=SQLITE_OK ); // } // if( rc==SQLITE_OK && zSuper[0] && res ){ // /* If there was a super-journal and this routine will return success, // ** see if it is possible to delete the super-journal. // */ // assert( zSuper==&pPager->pTmpSpace[4] ); // memset(&zSuper[-4], 0, 4); // rc = pager_delsuper(pPager, zSuper); // testcase( rc!=SQLITE_OK ); // } // if( isHot && nPlayback ){ // sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", // nPlayback, pPager->zJournal); // } // /* The Pager.sectorSize variable may have been updated while rolling // ** back a journal created by a process with a different sector size // ** value. Reset it to the correct value for this process. // */ // setSectorSize(pPager); // return rc; // } // /* // ** Read the content for page pPg out of the database file (or out of // ** the WAL if that is where the most recent copy if found) into // ** pPg->pData. A shared lock or greater must be held on the database // ** file before this function is called. // ** // ** If page 1 is read, then the value of Pager.dbFileVers[] is set to // ** the value read from the database file. // ** // ** If an IO error occurs, then the IO error is returned to the caller. // ** Otherwise, SQLITE_OK is returned. // */ // static int readDbPage(PgHdr *pPg){ // Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ // int rc = SQLITE_OK; /* Return code */ // #ifndef SQLITE_OMIT_WAL // u32 iFrame = 0; /* Frame of WAL containing pgno */ // assert( pPager->eState>=PAGER_READER && !MEMDB ); // assert( isOpen(pPager->fd) ); // if( pagerUseWal(pPager) ){ // rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); // if( rc ) return rc; // } // if( iFrame ){ // rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); // }else // #endif // { // i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; // rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); // if( rc==SQLITE_IOERR_SHORT_READ ){ // rc = SQLITE_OK; // } // } // if( pPg->pgno==1 ){ // if( rc ){ // /* If the read is unsuccessful, set the dbFileVers[] to something // ** that will never be a valid file version. dbFileVers[] is a copy // ** of bytes 24..39 of the database. Bytes 28..31 should always be // ** zero or the size of the database in page. Bytes 32..35 and 35..39 // ** should be page numbers which are never 0xffffffff. So filling // ** pPager->dbFileVers[] with all 0xff bytes should suffice. // ** // ** For an encrypted database, the situation is more complex: bytes // ** 24..39 of the database are white noise. But the probability of // ** white noise equaling 16 bytes of 0xff is vanishingly small so // ** we should still be ok. // */ // memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); // }else{ // u8 *dbFileVers = &((u8*)pPg->pData)[24]; // memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); // } // } // PAGER_INCR(sqlite3_pager_readdb_count); // PAGER_INCR(pPager->nRead); // IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); // PAGERTRACE(("FETCH %d page %d hash(%08x)\n", // PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); // return rc; // } // /* // ** Update the value of the change-counter at offsets 24 and 92 in // ** the header and the sqlite version number at offset 96. // ** // ** This is an unconditional update. See also the pager_incr_changecounter() // ** routine which only updates the change-counter if the update is actually // ** needed, as determined by the pPager->changeCountDone state variable. // */ // static void pager_write_changecounter(PgHdr *pPg){ // u32 change_counter; // if( NEVER(pPg==0) ) return; // /* Increment the value just read and write it back to byte 24. */ // change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; // put32bits(((char*)pPg->pData)+24, change_counter); // /* Also store the SQLite version number in bytes 96..99 and in // ** bytes 92..95 store the change counter for which the version number // ** is valid. */ // put32bits(((char*)pPg->pData)+92, change_counter); // put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); // } // #ifndef SQLITE_OMIT_WAL // /* // ** This function is invoked once for each page that has already been // ** written into the log file when a WAL transaction is rolled back. // ** Parameter iPg is the page number of said page. The pCtx argument // ** is actually a pointer to the Pager structure. // ** // ** If page iPg is present in the cache, and has no outstanding references, // ** it is discarded. Otherwise, if there are one or more outstanding // ** references, the page content is reloaded from the database. If the // ** attempt to reload content from the database is required and fails, // ** return an SQLite error code. Otherwise, SQLITE_OK. // */ // static int pagerUndoCallback(void *pCtx, Pgno iPg){ // int rc = SQLITE_OK; // Pager *pPager = (Pager *)pCtx; // PgHdr *pPg; // assert( pagerUseWal(pPager) ); // pPg = sqlite3PagerLookup(pPager, iPg); // if( pPg ){ // if( sqlite3PcachePageRefcount(pPg)==1 ){ // sqlite3PcacheDrop(pPg); // }else{ // rc = readDbPage(pPg); // if( rc==SQLITE_OK ){ // pPager->xReiniter(pPg); // } // sqlite3PagerUnrefNotNull(pPg); // } // } // /* Normally, if a transaction is rolled back, any backup processes are // ** updated as data is copied out of the rollback journal and into the // ** database. This is not generally possible with a WAL database, as // ** rollback involves simply truncating the log file. Therefore, if one // ** or more frames have already been written to the log (and therefore // ** also copied into the backup databases) as part of this transaction, // ** the backups must be restarted. // */ // sqlite3BackupRestart(pPager->pBackup); // return rc; // } // /* // ** This function is called to rollback a transaction on a WAL database. // */ // static int pagerRollbackWal(Pager *pPager){ // int rc; /* Return Code */ // PgHdr *pList; /* List of dirty pages to revert */ // /* For all pages in the cache that are currently dirty or have already // ** been written (but not committed) to the log file, do one of the // ** following: // ** // ** + Discard the cached page (if refcount==0), or // ** + Reload page content from the database (if refcount>0). // */ // pPager->dbSize = pPager->dbOrigSize; // rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); // pList = sqlite3PcacheDirtyList(pPager->pPCache); // while( pList && rc==SQLITE_OK ){ // PgHdr *pNext = pList->pDirty; // rc = pagerUndoCallback((void *)pPager, pList->pgno); // pList = pNext; // } // return rc; // } // /* // ** This function is a wrapper around sqlite3WalFrames(). As well as logging // ** the contents of the list of pages headed by pList (connected by pDirty), // ** this function notifies any active backup processes that the pages have // ** changed. // ** // ** The list of pages passed into this routine is always sorted by page number. // ** Hence, if page 1 appears anywhere on the list, it will be the first page. // */ // static int pagerWalFrames( // Pager *pPager, /* Pager object */ // PgHdr *pList, /* List of frames to log */ // Pgno nTruncate, /* Database size after this commit */ // int isCommit /* True if this is a commit */ // ){ // int rc; /* Return code */ // int nList; /* Number of pages in pList */ // PgHdr *p; /* For looping over pages */ // assert( pPager->pWal ); // assert( pList ); // #ifdef SQLITE_DEBUG // /* Verify that the page list is in accending order */ // for(p=pList; p && p->pDirty; p=p->pDirty){ // assert( p->pgno < p->pDirty->pgno ); // } // #endif // assert( pList->pDirty==0 || isCommit ); // if( isCommit ){ // /* If a WAL transaction is being committed, there is no point in writing // ** any pages with page numbers greater than nTruncate into the WAL file. // ** They will never be read by any client. So remove them from the pDirty // ** list here. */ // PgHdr **ppNext = &pList; // nList = 0; // for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ // if( p->pgno<=nTruncate ){ // ppNext = &p->pDirty; // nList++; // } // } // assert( pList ); // }else{ // nList = 1; // } // pPager->aStat[PAGER_STAT_WRITE] += nList; // if( pList->pgno==1 ) pager_write_changecounter(pList); // rc = sqlite3WalFrames(pPager->pWal, // pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags // ); // if( rc==SQLITE_OK && pPager->pBackup ){ // for(p=pList; p; p=p->pDirty){ // sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); // } // } // #ifdef SQLITE_CHECK_PAGES // pList = sqlite3PcacheDirtyList(pPager->pPCache); // for(p=pList; p; p=p->pDirty){ // pager_set_pagehash(p); // } // #endif // return rc; // } // /* // ** Begin a read transaction on the WAL. // ** // ** This routine used to be called "pagerOpenSnapshot()" because it essentially // ** makes a snapshot of the database at the current point in time and preserves // ** that snapshot for use by the reader in spite of concurrently changes by // ** other writers or checkpointers. // */ // static int pagerBeginReadTransaction(Pager *pPager){ // int rc; /* Return code */ // int changed = 0; /* True if cache must be reset */ // assert( pagerUseWal(pPager) ); // assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); // /* sqlite3WalEndReadTransaction() was not called for the previous // ** transaction in locking_mode=EXCLUSIVE. So call it now. If we // ** are in locking_mode=NORMAL and EndRead() was previously called, // ** the duplicate call is harmless. // */ // sqlite3WalEndReadTransaction(pPager->pWal); // rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); // if( rc!=SQLITE_OK || changed ){ // pager_reset(pPager); // if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); // } // return rc; // } // #endif // /* // ** This function is called as part of the transition from PAGER_OPEN // ** to PAGER_READER state to determine the size of the database file // ** in pages (assuming the page size currently stored in Pager.pageSize). // ** // ** If no error occurs, SQLITE_OK is returned and the size of the database // ** in pages is stored in *pnPage. Otherwise, an error code (perhaps // ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. // */ // static int pagerPagecount(Pager *pPager, Pgno *pnPage){ // Pgno nPage; /* Value to return via *pnPage */ // /* Query the WAL sub-system for the database size. The WalDbsize() // ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or // ** if the database size is not available. The database size is not // ** available from the WAL sub-system if the log file is empty or // ** contains no valid committed transactions. // */ // assert( pPager->eState==PAGER_OPEN ); // assert( pPager->eLock>=SHARED_LOCK ); // assert( isOpen(pPager->fd) ); // assert( pPager->tempFile==0 ); // nPage = sqlite3WalDbsize(pPager->pWal); // /* If the number of pages in the database is not available from the // ** WAL sub-system, determine the page count based on the size of // ** the database file. If the size of the database file is not an // ** integer multiple of the page-size, round up the result. // */ // if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ // i64 n = 0; /* Size of db file in bytes */ // int rc = sqlite3OsFileSize(pPager->fd, &n); // if( rc!=SQLITE_OK ){ // return rc; // } // nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); // } // /* If the current number of pages in the file is greater than the // ** configured maximum pager number, increase the allowed limit so // ** that the file can be read. // */ // if( nPage>pPager->mxPgno ){ // pPager->mxPgno = (Pgno)nPage; // } // *pnPage = nPage; // return SQLITE_OK; // } // #ifndef SQLITE_OMIT_WAL // /* // ** Check if the *-wal file that corresponds to the database opened by pPager // ** exists if the database is not empy, or verify that the *-wal file does // ** not exist (by deleting it) if the database file is empty. // ** // ** If the database is not empty and the *-wal file exists, open the pager // ** in WAL mode. If the database is empty or if no *-wal file exists and // ** if no error occurs, make sure Pager.journalMode is not set to // ** PAGER_JOURNALMODE_WAL. // ** // ** Return SQLITE_OK or an error code. // ** // ** The caller must hold a SHARED lock on the database file to call this // ** function. Because an EXCLUSIVE lock on the db file is required to delete // ** a WAL on a none-empty database, this ensures there is no race condition // ** between the xAccess() below and an xDelete() being executed by some // ** other connection. // */ // static int pagerOpenWalIfPresent(Pager *pPager){ // int rc = SQLITE_OK; // assert( pPager->eState==PAGER_OPEN ); // assert( pPager->eLock>=SHARED_LOCK ); // if( !pPager->tempFile ){ // int isWal; /* True if WAL file exists */ // rc = sqlite3OsAccess( // pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal // ); // if( rc==SQLITE_OK ){ // if( isWal ){ // Pgno nPage; /* Size of the database file */ // rc = pagerPagecount(pPager, &nPage); // if( rc ) return rc; // if( nPage==0 ){ // rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); // }else{ // testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); // rc = sqlite3PagerOpenWal(pPager, 0); // } // }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ // pPager->journalMode = PAGER_JOURNALMODE_DELETE; // } // } // } // return rc; // } // #endif // /* // ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback // ** the entire super-journal file. The case pSavepoint==NULL occurs when // ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction // ** savepoint. // ** // ** When pSavepoint is not NULL (meaning a non-transaction savepoint is // ** being rolled back), then the rollback consists of up to three stages, // ** performed in the order specified: // ** // ** * Pages are played back from the main journal starting at byte // ** offset PagerSavepoint.iOffset and continuing to // ** PagerSavepoint.iHdrOffset, or to the end of the main journal // ** file if PagerSavepoint.iHdrOffset is zero. // ** // ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played // ** back starting from the journal header immediately following // ** PagerSavepoint.iHdrOffset to the end of the main journal file. // ** // ** * Pages are then played back from the sub-journal file, starting // ** with the PagerSavepoint.iSubRec and continuing to the end of // ** the journal file. // ** // ** Throughout the rollback process, each time a page is rolled back, the // ** corresponding bit is set in a bitvec structure (variable pDone in the // ** implementation below). This is used to ensure that a page is only // ** rolled back the first time it is encountered in either journal. // ** // ** If pSavepoint is NULL, then pages are only played back from the main // ** journal file. There is no need for a bitvec in this case. // ** // ** In either case, before playback commences the Pager.dbSize variable // ** is reset to the value that it held at the start of the savepoint // ** (or transaction). No page with a page-number greater than this value // ** is played back. If one is encountered it is simply skipped. // */ // static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ // i64 szJ; /* Effective size of the main journal */ // i64 iHdrOff; /* End of first segment of main-journal records */ // int rc = SQLITE_OK; /* Return code */ // Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ // assert( pPager->eState!=PAGER_ERROR ); // assert( pPager->eState>=PAGER_WRITER_LOCKED ); // /* Allocate a bitvec to use to store the set of pages rolled back */ // if( pSavepoint ){ // pDone = sqlite3BitvecCreate(pSavepoint->nOrig); // if( !pDone ){ // return SQLITE_NOMEM; // } // } // /* Set the database size back to the value it was before the savepoint // ** being reverted was opened. // */ // pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; // pPager->changeCountDone = pPager->tempFile; // if( !pSavepoint && pagerUseWal(pPager) ){ // return pagerRollbackWal(pPager); // } // /* Use pPager->journalOff as the effective size of the main rollback // ** journal. The actual file might be larger than this in // ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything // ** past pPager->journalOff is off-limits to us. // */ // szJ = pPager->journalOff; // assert( pagerUseWal(pPager)==0 || szJ==0 ); // /* Begin by rolling back records from the main journal starting at // ** PagerSavepoint.iOffset and continuing to the next journal header. // ** There might be records in the main journal that have a page number // ** greater than the current database size (pPager->dbSize) but those // ** will be skipped automatically. Pages are added to pDone as they // ** are played back. // */ // if( pSavepoint && !pagerUseWal(pPager) ){ // iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; // pPager->journalOff = pSavepoint->iOffset; // while( rc==SQLITE_OK && pPager->journalOffjournalOff, pDone, 1, 1); // } // assert( rc!=SQLITE_DONE ); // }else{ // pPager->journalOff = 0; // } // /* Continue rolling back records out of the main journal starting at // ** the first journal header seen and continuing until the effective end // ** of the main journal file. Continue to skip out-of-range pages and // ** continue adding pages rolled back to pDone. // */ // while( rc==SQLITE_OK && pPager->journalOffjournalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" // ** test is related to ticket #2565. See the discussion in the // ** pager_playback() function for additional information. // */ // if( nJRec==0 // && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff // ){ // nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); // } // for(ii=0; rc==SQLITE_OK && iijournalOffjournalOff, pDone, 1, 1); // } // assert( rc!=SQLITE_DONE ); // } // assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); // /* Finally, rollback pages from the sub-journal. Page that were // ** previously rolled back out of the main journal (and are hence in pDone) // ** will be skipped. Out-of-range pages are also skipped. // */ // if( pSavepoint ){ // u32 ii; /* Loop counter */ // i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); // if( pagerUseWal(pPager) ){ // rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); // } // for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && iinSubRec; ii++){ // assert( offset==(i64)ii*(4+pPager->pageSize) ); // rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); // } // assert( rc!=SQLITE_DONE ); // } // sqlite3BitvecDestroy(pDone); // if( rc==SQLITE_OK ){ // pPager->journalOff = szJ; // } // return rc; // } // /* // ** Change the maximum number of in-memory pages that are allowed // ** before attempting to recycle clean and unused pages. // */ // void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ // sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); // } // /* // ** Change the maximum number of in-memory pages that are allowed // ** before attempting to spill pages to journal. // */ // int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ // return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); // } // /* // ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. // */ // static void pagerFixMaplimit(Pager *pPager){ // #if SQLITE_MAX_MMAP_SIZE>0 // sqlite3_file *fd = pPager->fd; // if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ // sqlite3_int64 sz; // sz = pPager->szMmap; // pPager->bUseFetch = (sz>0); // setGetterMethod(pPager); // sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); // } // #endif // } // /* // ** Change the maximum size of any memory mapping made of the database file. // */ // void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ // pPager->szMmap = szMmap; // pagerFixMaplimit(pPager); // } // /* // ** Free as much memory as possible from the pager. // */ // void sqlite3PagerShrink(Pager *pPager){ // sqlite3PcacheShrink(pPager->pPCache); // } // /* // ** Adjust settings of the pager to those specified in the pgFlags parameter. // ** // ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness // ** of the database to damage due to OS crashes or power failures by // ** changing the number of syncs()s when writing the journals. // ** There are four levels: // ** // ** OFF sqlite3OsSync() is never called. This is the default // ** for temporary and transient files. // ** // ** NORMAL The journal is synced once before writes begin on the // ** database. This is normally adequate protection, but // ** it is theoretically possible, though very unlikely, // ** that an inopertune power failure could leave the journal // ** in a state which would cause damage to the database // ** when it is rolled back. // ** // ** FULL The journal is synced twice before writes begin on the // ** database (with some additional information - the nRec field // ** of the journal header - being written in between the two // ** syncs). If we assume that writing a // ** single disk sector is atomic, then this mode provides // ** assurance that the journal will not be corrupted to the // ** point of causing damage to the database during rollback. // ** // ** EXTRA This is like FULL except that is also syncs the directory // ** that contains the rollback journal after the rollback // ** journal is unlinked. // ** // ** The above is for a rollback-journal mode. For WAL mode, OFF continues // ** to mean that no syncs ever occur. NORMAL means that the WAL is synced // ** prior to the start of checkpoint and that the database file is synced // ** at the conclusion of the checkpoint if the entire content of the WAL // ** was written back into the database. But no sync operations occur for // ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL // ** file is synced following each commit operation, in addition to the // ** syncs associated with NORMAL. There is no difference between FULL // ** and EXTRA for WAL mode. // ** // ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The // ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync // ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an // ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL // ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the // ** synchronous=FULL versus synchronous=NORMAL setting determines when // ** the xSync primitive is called and is relevant to all platforms. // ** // ** Numeric values associated with these states are OFF==1, NORMAL=2, // ** and FULL=3. // */ // #ifndef SQLITE_OMIT_PAGER_PRAGMAS // void sqlite3PagerSetFlags( // Pager *pPager, /* The pager to set safety level for */ // unsigned pgFlags /* Various flags */ // ){ // unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; // if( pPager->tempFile ){ // pPager->noSync = 1; // pPager->fullSync = 0; // pPager->extraSync = 0; // }else{ // pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; // pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; // pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; // } // if( pPager->noSync ){ // pPager->syncFlags = 0; // }else if( pgFlags & PAGER_FULLFSYNC ){ // pPager->syncFlags = SQLITE_SYNC_FULL; // }else{ // pPager->syncFlags = SQLITE_SYNC_NORMAL; // } // pPager->walSyncFlags = (pPager->syncFlags<<2); // if( pPager->fullSync ){ // pPager->walSyncFlags |= pPager->syncFlags; // } // if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ // pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); // } // if( pgFlags & PAGER_CACHESPILL ){ // pPager->doNotSpill &= ~SPILLFLAG_OFF; // }else{ // pPager->doNotSpill |= SPILLFLAG_OFF; // } // } // #endif // /* // ** The following global variable is incremented whenever the library // ** attempts to open a temporary file. This information is used for // ** testing and analysis only. // */ // #ifdef SQLITE_TEST // int sqlite3_opentemp_count = 0; // #endif // /* // ** Open a temporary file. // ** // ** Write the file descriptor into *pFile. Return SQLITE_OK on success // ** or some other error code if we fail. The OS will automatically // ** delete the temporary file when it is closed. // ** // ** The flags passed to the VFS layer xOpen() call are those specified // ** by parameter vfsFlags ORed with the following: // ** // ** SQLITE_OPEN_READWRITE // ** SQLITE_OPEN_CREATE // ** SQLITE_OPEN_EXCLUSIVE // ** SQLITE_OPEN_DELETEONCLOSE // */ // static int pagerOpentemp( // Pager *pPager, /* The pager object */ // sqlite3_file *pFile, /* Write the file descriptor here */ // int vfsFlags /* Flags passed through to the VFS */ // ){ // int rc; /* Return code */ // #ifdef SQLITE_TEST // sqlite3_opentemp_count++; /* Used for testing and analysis only */ // #endif // vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | // SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; // rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); // assert( rc!=SQLITE_OK || isOpen(pFile) ); // return rc; // } // /* // ** Set the busy handler function. // ** // ** The pager invokes the busy-handler if sqlite3OsLock() returns // ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, // ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE // ** lock. It does *not* invoke the busy handler when upgrading from // ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE // ** (which occurs during hot-journal rollback). Summary: // ** // ** Transition | Invokes xBusyHandler // ** -------------------------------------------------------- // ** NO_LOCK -> SHARED_LOCK | Yes // ** SHARED_LOCK -> RESERVED_LOCK | No // ** SHARED_LOCK -> EXCLUSIVE_LOCK | No // ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes // ** // ** If the busy-handler callback returns non-zero, the lock is // ** retried. If it returns zero, then the SQLITE_BUSY error is // ** returned to the caller of the pager API function. // */ // void sqlite3PagerSetBusyHandler( // Pager *pPager, /* Pager object */ // int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ // void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ // ){ // void **ap; // pPager->xBusyHandler = xBusyHandler; // pPager->pBusyHandlerArg = pBusyHandlerArg; // ap = (void **)&pPager->xBusyHandler; // assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); // assert( ap[1]==pBusyHandlerArg ); // sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); // } // /* // ** Change the page size used by the Pager object. The new page size // ** is passed in *pPageSize. // ** // ** If the pager is in the error state when this function is called, it // ** is a no-op. The value returned is the error state error code (i.e. // ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). // ** // ** Otherwise, if all of the following are true: // ** // ** * the new page size (value of *pPageSize) is valid (a power // ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and // ** // ** * there are no outstanding page references, and // ** // ** * the database is either not an in-memory database or it is // ** an in-memory database that currently consists of zero pages. // ** // ** then the pager object page size is set to *pPageSize. // ** // ** If the page size is changed, then this function uses sqlite3PagerMalloc() // ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt // ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. // ** In all other cases, SQLITE_OK is returned. // ** // ** If the page size is not changed, either because one of the enumerated // ** conditions above is not true, the pager was in error state when this // ** function was called, or because the memory allocation attempt failed, // ** then *pPageSize is set to the old, retained page size before returning. // */ // int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ // int rc = SQLITE_OK; // /* It is not possible to do a full assert_pager_state() here, as this // ** function may be called from within PagerOpen(), before the state // ** of the Pager object is internally consistent. // ** // ** At one point this function returned an error if the pager was in // ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that // ** there is at least one outstanding page reference, this function // ** is a no-op for that case anyhow. // */ // u32 pageSize = *pPageSize; // assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); // if( (pPager->memDb==0 || pPager->dbSize==0) // && sqlite3PcacheRefCount(pPager->pPCache)==0 // && pageSize && pageSize!=(u32)pPager->pageSize // ){ // char *pNew = NULL; /* New temp space */ // i64 nByte = 0; // if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ // rc = sqlite3OsFileSize(pPager->fd, &nByte); // } // if( rc==SQLITE_OK ){ // /* 8 bytes of zeroed overrun space is sufficient so that the b-tree // * cell header parser will never run off the end of the allocation */ // pNew = (char *)sqlite3PageMalloc(pageSize+8); // if( !pNew ){ // rc = SQLITE_NOMEM; // }else{ // memset(pNew+pageSize, 0, 8); // } // } // if( rc==SQLITE_OK ){ // pager_reset(pPager); // rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); // } // if( rc==SQLITE_OK ){ // sqlite3PageFree(pPager->pTmpSpace); // pPager->pTmpSpace = pNew; // pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); // pPager->pageSize = pageSize; // }else{ // sqlite3PageFree(pNew); // } // } // *pPageSize = pPager->pageSize; // if( rc==SQLITE_OK ){ // if( nReserve<0 ) nReserve = pPager->nReserve; // assert( nReserve>=0 && nReserve<1000 ); // pPager->nReserve = (i16)nReserve; // pagerFixMaplimit(pPager); // } // return rc; // } // /* // ** Return a pointer to the "temporary page" buffer held internally // ** by the pager. This is a buffer that is big enough to hold the // ** entire content of a database page. This buffer is used internally // ** during rollback and will be overwritten whenever a rollback // ** occurs. But other modules are free to use it too, as long as // ** no rollbacks are happening. // */ // void *sqlite3PagerTempSpace(Pager *pPager){ // return pPager->pTmpSpace; // } // /* // ** Attempt to set the maximum database page count if mxPage is positive. // ** Make no changes if mxPage is zero or negative. And never reduce the // ** maximum page count below the current size of the database. // ** // ** Regardless of mxPage, return the current maximum page count. // */ // Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){ // if( mxPage>0 ){ // pPager->mxPgno = mxPage; // } // assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ // /* assert( pPager->mxPgno>=pPager->dbSize ); */ // /* OP_MaxPgcnt ensures that the parameter passed to this function is not // ** less than the total number of valid pages in the database. But this // ** may be less than Pager.dbSize, and so the assert() above is not valid */ // return pPager->mxPgno; // } // /* // ** The following set of routines are used to disable the simulated // ** I/O error mechanism. These routines are used to avoid simulated // ** errors in places where we do not care about errors. // ** // ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops // ** and generate no code. // */ // #ifdef SQLITE_TEST // extern int sqlite3_io_error_pending; // extern int sqlite3_io_error_hit; // static int saved_cnt; // void disable_simulated_io_errors(void){ // saved_cnt = sqlite3_io_error_pending; // sqlite3_io_error_pending = -1; // } // void enable_simulated_io_errors(void){ // sqlite3_io_error_pending = saved_cnt; // } // #else // # define disable_simulated_io_errors() // # define enable_simulated_io_errors() // #endif // /* // ** Read the first N bytes from the beginning of the file into memory // ** that pDest points to. // ** // ** If the pager was opened on a transient file (zFilename==""), or // ** opened on a file less than N bytes in size, the output buffer is // ** zeroed and SQLITE_OK returned. The rationale for this is that this // ** function is used to read database headers, and a new transient or // ** zero sized database has a header than consists entirely of zeroes. // ** // ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, // ** the error code is returned to the caller and the contents of the // ** output buffer undefined. // */ // int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ // int rc = SQLITE_OK; // memset(pDest, 0, N); // assert( isOpen(pPager->fd) || pPager->tempFile ); // /* This routine is only called by btree immediately after creating // ** the Pager object. There has not been an opportunity to transition // ** to WAL mode yet. // */ // assert( !pagerUseWal(pPager) ); // if( isOpen(pPager->fd) ){ // IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) // rc = sqlite3OsRead(pPager->fd, pDest, N, 0); // if( rc==SQLITE_IOERR_SHORT_READ ){ // rc = SQLITE_OK; // } // } // return rc; // } // /* // ** This function may only be called when a read-transaction is open on // ** the pager. It returns the total number of pages in the database. // ** // ** However, if the file is between 1 and bytes in size, then // ** this is considered a 1 page file. // */ // void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ // assert( pPager->eState>=PAGER_READER ); // assert( pPager->eState!=PAGER_WRITER_FINISHED ); // *pnPage = (int)pPager->dbSize; // } // /* // ** Try to obtain a lock of type locktype on the database file. If // ** a similar or greater lock is already held, this function is a no-op // ** (returning SQLITE_OK immediately). // ** // ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke // ** the busy callback if the lock is currently not available. Repeat // ** until the busy callback returns false or until the attempt to // ** obtain the lock succeeds. // ** // ** Return SQLITE_OK on success and an error code if we cannot obtain // ** the lock. If the lock is obtained successfully, set the Pager.state // ** variable to locktype before returning. // */ // static int pager_wait_on_lock(Pager *pPager, int locktype){ // int rc; /* Return code */ // /* Check that this is either a no-op (because the requested lock is // ** already held), or one of the transitions that the busy-handler // ** may be invoked during, according to the comment above // ** sqlite3PagerSetBusyhandler(). // */ // assert( (pPager->eLock>=locktype) // || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) // || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) // ); // do { // rc = pagerLockDb(pPager, locktype); // }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); // return rc; // } // /* // ** Function assertTruncateConstraint(pPager) checks that one of the // ** following is true for all dirty pages currently in the page-cache: // ** // ** a) The page number is less than or equal to the size of the // ** current database image, in pages, OR // ** // ** b) if the page content were written at this time, it would not // ** be necessary to write the current content out to the sub-journal // ** (as determined by function subjRequiresPage()). // ** // ** If the condition asserted by this function were not true, and the // ** dirty page were to be discarded from the cache via the pagerStress() // ** routine, pagerStress() would not write the current page content to // ** the database file. If a savepoint transaction were rolled back after // ** this happened, the correct behavior would be to restore the current // ** content of the page. However, since this content is not present in either // ** the database file or the portion of the rollback journal and // ** sub-journal rolled back the content could not be restored and the // ** database image would become corrupt. It is therefore fortunate that // ** this circumstance cannot arise. // */ // #if defined(SQLITE_DEBUG) // static void assertTruncateConstraintCb(PgHdr *pPg){ // assert( pPg->flags&PGHDR_DIRTY ); // assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); // } // static void assertTruncateConstraint(Pager *pPager){ // sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); // } // #else // # define assertTruncateConstraint(pPager) // #endif // /* // ** Truncate the in-memory database file image to nPage pages. This // ** function does not actually modify the database file on disk. It // ** just sets the internal state of the pager object so that the // ** truncation will be done when the current transaction is committed. // ** // ** This function is only called right before committing a transaction. // ** Once this function has been called, the transaction must either be // ** rolled back or committed. It is not safe to call this function and // ** then continue writing to the database. // */ // void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ // assert( pPager->dbSize>=nPage || CORRUPT_DB ); // testcase( pPager->dbSizeeState>=PAGER_WRITER_CACHEMOD ); // pPager->dbSize = nPage; // /* At one point the code here called assertTruncateConstraint() to // ** ensure that all pages being truncated away by this operation are, // ** if one or more savepoints are open, present in the savepoint // ** journal so that they can be restored if the savepoint is rolled // ** back. This is no longer necessary as this function is now only // ** called right before committing a transaction. So although the // ** Pager object may still have open savepoints (Pager.nSavepoint!=0), // ** they cannot be rolled back. So the assertTruncateConstraint() call // ** is no longer correct. */ // } // /* // ** This function is called before attempting a hot-journal rollback. It // ** syncs the journal file to disk, then sets pPager->journalHdr to the // ** size of the journal file so that the pager_playback() routine knows // ** that the entire journal file has been synced. // ** // ** Syncing a hot-journal to disk before attempting to roll it back ensures // ** that if a power-failure occurs during the rollback, the process that // ** attempts rollback following system recovery sees the same journal // ** content as this process. // ** // ** If everything goes as planned, SQLITE_OK is returned. Otherwise, // ** an SQLite error code. // */ // static int pagerSyncHotJournal(Pager *pPager){ // int rc = SQLITE_OK; // if( !pPager->noSync ){ // rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); // } // if( rc==SQLITE_OK ){ // rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); // } // return rc; // } // #if SQLITE_MAX_MMAP_SIZE>0 // /* // ** Obtain a reference to a memory mapped page object for page number pgno. // ** The new object will use the pointer pData, obtained from xFetch(). // ** If successful, set *ppPage to point to the new page reference // ** and return SQLITE_OK. Otherwise, return an SQLite error code and set // ** *ppPage to zero. // ** // ** Page references obtained by calling this function should be released // ** by calling pagerReleaseMapPage(). // */ // static int pagerAcquireMapPage( // Pager *pPager, /* Pager object */ // Pgno pgno, /* Page number */ // void *pData, /* xFetch()'d data for this page */ // PgHdr **ppPage /* OUT: Acquired page object */ // ){ // PgHdr *p; /* Memory mapped page to return */ // if( pPager->pMmapFreelist ){ // *ppPage = p = pPager->pMmapFreelist; // pPager->pMmapFreelist = p->pDirty; // p->pDirty = 0; // assert( pPager->nExtra>=8 ); // memset(p->pExtra, 0, 8); // }else{ // *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); // if( p==0 ){ // sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); // return SQLITE_NOMEM; // } // p->pExtra = (void *)&p[1]; // p->flags = PGHDR_MMAP; // p->nRef = 1; // p->pPager = pPager; // } // assert( p->pExtra==(void *)&p[1] ); // assert( p->pPage==0 ); // assert( p->flags==PGHDR_MMAP ); // assert( p->pPager==pPager ); // assert( p->nRef==1 ); // p->pgno = pgno; // p->pData = pData; // pPager->nMmapOut++; // return SQLITE_OK; // } // #endif // /* // ** Release a reference to page pPg. pPg must have been returned by an // ** earlier call to pagerAcquireMapPage(). // */ // static void pagerReleaseMapPage(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // pPager->nMmapOut--; // pPg->pDirty = pPager->pMmapFreelist; // pPager->pMmapFreelist = pPg; // assert( pPager->fd->pMethods->iVersion>=3 ); // sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); // } // /* // ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. // */ // static void pagerFreeMapHdrs(Pager *pPager){ // PgHdr *p; // PgHdr *pNext; // for(p=pPager->pMmapFreelist; p; p=pNext){ // pNext = p->pDirty; // sqlite3_free(p); // } // } // /* Verify that the database file has not be deleted or renamed out from // ** under the pager. Return SQLITE_OK if the database is still where it ought // ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error // ** code from sqlite3OsAccess()) if the database has gone missing. // */ // static int databaseIsUnmoved(Pager *pPager){ // int bHasMoved = 0; // int rc; // if( pPager->tempFile ) return SQLITE_OK; // if( pPager->dbSize==0 ) return SQLITE_OK; // assert( pPager->zFilename && pPager->zFilename[0] ); // rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); // if( rc==SQLITE_NOTFOUND ){ // /* If the HAS_MOVED file-control is unimplemented, assume that the file // ** has not been moved. That is the historical behavior of SQLite: prior to // ** version 3.8.3, it never checked */ // rc = SQLITE_OK; // }else if( rc==SQLITE_OK && bHasMoved ){ // rc = SQLITE_READONLY_DBMOVED; // } // return rc; // } // /* // ** Shutdown the page cache. Free all memory and close all files. // ** // ** If a transaction was in progress when this routine is called, that // ** transaction is rolled back. All outstanding pages are invalidated // ** and their memory is freed. Any attempt to use a page associated // ** with this page cache after this function returns will likely // ** result in a coredump. // ** // ** This function always succeeds. If a transaction is active an attempt // ** is made to roll it back. If an error occurs during the rollback // ** a hot journal may be left in the filesystem but no error is returned // ** to the caller. // */ // int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ // u8 *pTmp = (u8*)pPager->pTmpSpace; // assert( db || pagerUseWal(pPager)==0 ); // assert( assert_pager_state(pPager) ); // disable_simulated_io_errors(); // sqlite3BeginBenignMalloc(); // pagerFreeMapHdrs(pPager); // /* pPager->errCode = 0; */ // pPager->exclusiveMode = 0; // #ifndef SQLITE_OMIT_WAL // { // u8 *a = 0; // assert( db || pPager->pWal==0 ); // if( db && 0==(db->flags & SQLITE_NoCkptOnClose) // && SQLITE_OK==databaseIsUnmoved(pPager) // ){ // a = pTmp; // } // sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); // pPager->pWal = 0; // } // #endif // pager_reset(pPager); // if( MEMDB ){ // pager_unlock(pPager); // }else{ // /* If it is open, sync the journal file before calling UnlockAndRollback. // ** If this is not done, then an unsynced portion of the open journal // ** file may be played back into the database. If a power failure occurs // ** while this is happening, the database could become corrupt. // ** // ** If an error occurs while trying to sync the journal, shift the pager // ** into the ERROR state. This causes UnlockAndRollback to unlock the // ** database and close the journal file without attempting to roll it // ** back or finalize it. The next database user will have to do hot-journal // ** rollback before accessing the database file. // */ // if( isOpen(pPager->jfd) ){ // pager_error(pPager, pagerSyncHotJournal(pPager)); // } // pagerUnlockAndRollback(pPager); // } // sqlite3EndBenignMalloc(); // enable_simulated_io_errors(); // PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); // IOTRACE(("CLOSE %p\n", pPager)) // sqlite3OsClose(pPager->jfd); // sqlite3OsClose(pPager->fd); // sqlite3PageFree(pTmp); // sqlite3PcacheClose(pPager->pPCache); // assert( !pPager->aSavepoint && !pPager->pInJournal ); // assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); // sqlite3_free(pPager); // return SQLITE_OK; // } // #if !defined(NDEBUG) || defined(SQLITE_TEST) // /* // ** Return the page number for page pPg. // */ // Pgno sqlite3PagerPagenumber(DbPage *pPg){ // return pPg->pgno; // } // #endif // /* // ** Increment the reference count for page pPg. // */ // void sqlite3PagerRef(DbPage *pPg){ // sqlite3PcacheRef(pPg); // } // /* // ** Sync the journal. In other words, make sure all the pages that have // ** been written to the journal have actually reached the surface of the // ** disk and can be restored in the event of a hot-journal rollback. // ** // ** If the Pager.noSync flag is set, then this function is a no-op. // ** Otherwise, the actions required depend on the journal-mode and the // ** device characteristics of the file-system, as follows: // ** // ** * If the journal file is an in-memory journal file, no action need // ** be taken. // ** // ** * Otherwise, if the device does not support the SAFE_APPEND property, // ** then the nRec field of the most recently written journal header // ** is updated to contain the number of journal records that have // ** been written following it. If the pager is operating in full-sync // ** mode, then the journal file is synced before this field is updated. // ** // ** * If the device does not support the SEQUENTIAL property, then // ** journal file is synced. // ** // ** Or, in pseudo-code: // ** // ** if( NOT ){ // ** if( NOT SAFE_APPEND ){ // ** if( ) xSync(); // ** // ** } // ** if( NOT SEQUENTIAL ) xSync(); // ** } // ** // ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every // ** page currently held in memory before returning SQLITE_OK. If an IO // ** error is encountered, then the IO error code is returned to the caller. // */ // static int syncJournal(Pager *pPager, int newHdr){ // int rc; /* Return code */ // assert( pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // ); // assert( assert_pager_state(pPager) ); // assert( !pagerUseWal(pPager) ); // rc = sqlite3PagerExclusiveLock(pPager); // if( rc!=SQLITE_OK ) return rc; // if( !pPager->noSync ){ // assert( !pPager->tempFile ); // if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ // const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); // assert( isOpen(pPager->jfd) ); // if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ // /* This block deals with an obscure problem. If the last connection // ** that wrote to this database was operating in persistent-journal // ** mode, then the journal file may at this point actually be larger // ** than Pager.journalOff bytes. If the next thing in the journal // ** file happens to be a journal-header (written as part of the // ** previous connection's transaction), and a crash or power-failure // ** occurs after nRec is updated but before this connection writes // ** anything else to the journal file (or commits/rolls back its // ** transaction), then SQLite may become confused when doing the // ** hot-journal rollback following recovery. It may roll back all // ** of this connections data, then proceed to rolling back the old, // ** out-of-date data that follows it. Database corruption. // ** // ** To work around this, if the journal file does appear to contain // ** a valid header following Pager.journalOff, then write a 0x00 // ** byte to the start of it to prevent it from being recognized. // ** // ** Variable iNextHdrOffset is set to the offset at which this // ** problematic header will occur, if it exists. aMagic is used // ** as a temporary buffer to inspect the first couple of bytes of // ** the potential journal header. // */ // i64 iNextHdrOffset; // u8 aMagic[8]; // u8 zHeader[sizeof(aJournalMagic)+4]; // memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); // put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); // iNextHdrOffset = journalHdrOffset(pPager); // rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); // if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ // static const u8 zerobyte = 0; // rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); // } // if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ // return rc; // } // /* Write the nRec value into the journal file header. If in // ** full-synchronous mode, sync the journal first. This ensures that // ** all data has really hit the disk before nRec is updated to mark // ** it as a candidate for rollback. // ** // ** This is not required if the persistent media supports the // ** SAFE_APPEND property. Because in this case it is not possible // ** for garbage data to be appended to the file, the nRec field // ** is populated with 0xFFFFFFFF when the journal header is written // ** and never needs to be updated. // */ // if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ // PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); // IOTRACE(("JSYNC %p\n", pPager)) // rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); // if( rc!=SQLITE_OK ) return rc; // } // IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); // rc = sqlite3OsWrite( // pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr // ); // if( rc!=SQLITE_OK ) return rc; // } // if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ // PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); // IOTRACE(("JSYNC %p\n", pPager)) // rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| // (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) // ); // if( rc!=SQLITE_OK ) return rc; // } // pPager->journalHdr = pPager->journalOff; // if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ // pPager->nRec = 0; // rc = writeJournalHdr(pPager); // if( rc!=SQLITE_OK ) return rc; // } // }else{ // pPager->journalHdr = pPager->journalOff; // } // } // /* Unless the pager is in noSync mode, the journal file was just // ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on // ** all pages. // */ // sqlite3PcacheClearSyncFlags(pPager->pPCache); // pPager->eState = PAGER_WRITER_DBMOD; // assert( assert_pager_state(pPager) ); // return SQLITE_OK; // } // /* // ** The argument is the first in a linked list of dirty pages connected // ** by the PgHdr.pDirty pointer. This function writes each one of the // ** in-memory pages in the list to the database file. The argument may // ** be NULL, representing an empty list. In this case this function is // ** a no-op. // ** // ** The pager must hold at least a RESERVED lock when this function // ** is called. Before writing anything to the database file, this lock // ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, // ** SQLITE_BUSY is returned and no data is written to the database file. // ** // ** If the pager is a temp-file pager and the actual file-system file // ** is not yet open, it is created and opened before any data is // ** written out. // ** // ** Once the lock has been upgraded and, if necessary, the file opened, // ** the pages are written out to the database file in list order. Writing // ** a page is skipped if it meets either of the following criteria: // ** // ** * The page number is greater than Pager.dbSize, or // ** * The PGHDR_DONT_WRITE flag is set on the page. // ** // ** If writing out a page causes the database file to grow, Pager.dbFileSize // ** is updated accordingly. If page 1 is written out, then the value cached // ** in Pager.dbFileVers[] is updated to match the new value stored in // ** the database file. // ** // ** If everything is successful, SQLITE_OK is returned. If an IO error // ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot // ** be obtained, SQLITE_BUSY is returned. // */ // static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ // int rc = SQLITE_OK; /* Return code */ // /* This function is only called for rollback pagers in WRITER_DBMOD state. */ // assert( !pagerUseWal(pPager) ); // assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); // assert( pPager->eLock==EXCLUSIVE_LOCK ); // assert( isOpen(pPager->fd) || pList->pDirty==0 ); // /* If the file is a temp-file has not yet been opened, open it now. It // ** is not possible for rc to be other than SQLITE_OK if this branch // ** is taken, as pager_wait_on_lock() is a no-op for temp-files. // */ // if( !isOpen(pPager->fd) ){ // assert( pPager->tempFile && rc==SQLITE_OK ); // rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); // } // /* Before the first write, give the VFS a hint of what the final // ** file size will be. // */ // assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); // if( rc==SQLITE_OK // && pPager->dbHintSizedbSize // && (pList->pDirty || pList->pgno>pPager->dbHintSize) // ){ // sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; // sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); // pPager->dbHintSize = pPager->dbSize; // } // while( rc==SQLITE_OK && pList ){ // Pgno pgno = pList->pgno; // /* If there are dirty pages in the page cache with page numbers greater // ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to // ** make the file smaller (presumably by auto-vacuum code). Do not write // ** any such pages to the file. // ** // ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag // ** set (set by sqlite3PagerDontWrite()). // */ // if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ // i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ // char *pData; /* Data to write */ // assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); // if( pList->pgno==1 ) pager_write_changecounter(pList); // pData = pList->pData; // /* Write out the page data. */ // rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); // /* If page 1 was just written, update Pager.dbFileVers to match // ** the value now stored in the database file. If writing this // ** page caused the database file to grow, update dbFileSize. // */ // if( pgno==1 ){ // memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); // } // if( pgno>pPager->dbFileSize ){ // pPager->dbFileSize = pgno; // } // pPager->aStat[PAGER_STAT_WRITE]++; // /* Update any backup objects copying the contents of this pager. */ // sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); // PAGERTRACE(("STORE %d page %d hash(%08x)\n", // PAGERID(pPager), pgno, pager_pagehash(pList))); // IOTRACE(("PGOUT %p %d\n", pPager, pgno)); // PAGER_INCR(sqlite3_pager_writedb_count); // }else{ // PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); // } // pager_set_pagehash(pList); // pList = pList->pDirty; // } // return rc; // } // /* // ** Ensure that the sub-journal file is open. If it is already open, this // ** function is a no-op. // ** // ** SQLITE_OK is returned if everything goes according to plan. An // ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() // ** fails. // */ // static int openSubJournal(Pager *pPager){ // int rc = SQLITE_OK; // if( !isOpen(pPager->sjfd) ){ // const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE // | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE // | SQLITE_OPEN_DELETEONCLOSE; // int nStmtSpill = sqlite3Config.nStmtSpill; // if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ // nStmtSpill = -1; // } // rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); // } // return rc; // } // /* // ** Append a record of the current state of page pPg to the sub-journal. // ** // ** If successful, set the bit corresponding to pPg->pgno in the bitvecs // ** for all open savepoints before returning. // ** // ** This function returns SQLITE_OK if everything is successful, an IO // ** error code if the attempt to write to the sub-journal fails, or // ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint // ** bitvec. // */ // static int subjournalPage(PgHdr *pPg){ // int rc = SQLITE_OK; // Pager *pPager = pPg->pPager; // if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ // /* Open the sub-journal, if it has not already been opened */ // assert( pPager->useJournal ); // assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); // assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); // assert( pagerUseWal(pPager) // || pageInJournal(pPager, pPg) // || pPg->pgno>pPager->dbOrigSize // ); // rc = openSubJournal(pPager); // /* If the sub-journal was opened successfully (or was already open), // ** write the journal record into the file. */ // if( rc==SQLITE_OK ){ // void *pData = pPg->pData; // i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); // char *pData2; // pData2 = pData; // PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); // rc = write32bits(pPager->sjfd, offset, pPg->pgno); // if( rc==SQLITE_OK ){ // rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); // } // } // } // if( rc==SQLITE_OK ){ // pPager->nSubRec++; // assert( pPager->nSavepoint>0 ); // rc = addToSavepointBitvecs(pPager, pPg->pgno); // } // return rc; // } // static int subjournalPageIfRequired(PgHdr *pPg){ // if( subjRequiresPage(pPg) ){ // return subjournalPage(pPg); // }else{ // return SQLITE_OK; // } // } // /* // ** This function is called by the pcache layer when it has reached some // ** soft memory limit. The first argument is a pointer to a Pager object // ** (cast as a void*). The pager is always 'purgeable' (not an in-memory // ** database). The second argument is a reference to a page that is // ** currently dirty but has no outstanding references. The page // ** is always associated with the Pager object passed as the first // ** argument. // ** // ** The job of this function is to make pPg clean by writing its contents // ** out to the database file, if possible. This may involve syncing the // ** journal file. // ** // ** If successful, sqlite3PcacheMakeClean() is called on the page and // ** SQLITE_OK returned. If an IO error occurs while trying to make the // ** page clean, the IO error code is returned. If the page cannot be // ** made clean for some other reason, but no error occurs, then SQLITE_OK // ** is returned by sqlite3PcacheMakeClean() is not called. // */ // static int pagerStress(void *p, PgHdr *pPg){ // Pager *pPager = (Pager *)p; // int rc = SQLITE_OK; // assert( pPg->pPager==pPager ); // assert( pPg->flags&PGHDR_DIRTY ); // /* The doNotSpill NOSYNC bit is set during times when doing a sync of // ** journal (and adding a new header) is not allowed. This occurs // ** during calls to sqlite3PagerWrite() while trying to journal multiple // ** pages belonging to the same sector. // ** // ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling // ** regardless of whether or not a sync is required. This is set during // ** a rollback or by user request, respectively. // ** // ** Spilling is also prohibited when in an error state since that could // ** lead to database corruption. In the current implementation it // ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 // ** while in the error state, hence it is impossible for this routine to // ** be called in the error state. Nevertheless, we include a NEVER() // ** test for the error state as a safeguard against future changes. // */ // if( NEVER(pPager->errCode) ) return SQLITE_OK; // testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); // testcase( pPager->doNotSpill & SPILLFLAG_OFF ); // testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); // if( pPager->doNotSpill // && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 // || (pPg->flags & PGHDR_NEED_SYNC)!=0) // ){ // return SQLITE_OK; // } // pPager->aStat[PAGER_STAT_SPILL]++; // pPg->pDirty = 0; // if( pagerUseWal(pPager) ){ // /* Write a single frame for this page to the log. */ // rc = subjournalPageIfRequired(pPg); // if( rc==SQLITE_OK ){ // rc = pagerWalFrames(pPager, pPg, 0, 0); // } // }else{ // #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE // if( pPager->tempFile==0 ){ // rc = sqlite3JournalCreate(pPager->jfd); // if( rc!=SQLITE_OK ) return pager_error(pPager, rc); // } // #endif // /* Sync the journal file if required. */ // if( pPg->flags&PGHDR_NEED_SYNC // || pPager->eState==PAGER_WRITER_CACHEMOD // ){ // rc = syncJournal(pPager, 1); // } // /* Write the contents of the page out to the database file. */ // if( rc==SQLITE_OK ){ // assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); // rc = pager_write_pagelist(pPager, pPg); // } // } // /* Mark the page as clean. */ // if( rc==SQLITE_OK ){ // PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); // sqlite3PcacheMakeClean(pPg); // } // return pager_error(pPager, rc); // } // /* // ** Flush all unreferenced dirty pages to disk. // */ // int sqlite3PagerFlush(Pager *pPager){ // int rc = pPager->errCode; // if( !MEMDB ){ // PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); // assert( assert_pager_state(pPager) ); // while( rc==SQLITE_OK && pList ){ // PgHdr *pNext = pList->pDirty; // if( pList->nRef==0 ){ // rc = pagerStress((void*)pPager, pList); // } // pList = pNext; // } // } // return rc; // } // /* // ** Allocate and initialize a new Pager object and put a pointer to it // ** in *ppPager. The pager should eventually be freed by passing it // ** to sqlite3PagerClose(). // ** // ** The zFilename argument is the path to the database file to open. // ** If zFilename is NULL then a randomly-named temporary file is created // ** and used as the file to be cached. Temporary files are be deleted // ** automatically when they are closed. If zFilename is ":memory:" then // ** all information is held in cache. It is never written to disk. // ** This can be used to implement an in-memory database. // ** // ** The nExtra parameter specifies the number of bytes of space allocated // ** along with each page reference. This space is available to the user // ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the // ** first 8 bytes of this space are zeroed but the remainder is uninitialized. // ** (The extra space is used by btree as the MemPage object.) // ** // ** The flags argument is used to specify properties that affect the // ** operation of the pager. It should be passed some bitwise combination // ** of the PAGER_* flags. // ** // ** The vfsFlags parameter is a bitmask to pass to the flags parameter // ** of the xOpen() method of the supplied VFS when opening files. // ** // ** If the pager object is allocated and the specified file opened // ** successfully, SQLITE_OK is returned and *ppPager set to point to // ** the new pager object. If an error occurs, *ppPager is set to NULL // ** and error code returned. This function may return SQLITE_NOMEM // ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or // ** various SQLITE_IO_XXX errors. // */ // int sqlite3PagerOpen( // sqlite3_vfs *pVfs, /* The virtual file system to use */ // Pager **ppPager, /* OUT: Return the Pager structure here */ // const char *zFilename, /* Name of the database file to open */ // int nExtra, /* Extra bytes append to each in-memory page */ // int flags, /* flags controlling this file */ // int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ // void (*xReinit)(DbPage*) /* Function to reinitialize pages */ // ){ // u8 *pPtr; // Pager *pPager = 0; /* Pager object to allocate and return */ // int rc = SQLITE_OK; /* Return code */ // int tempFile = 0; /* True for temp files (incl. in-memory files) */ // int memDb = 0; /* True if this is an in-memory file */ // #ifndef SQLITE_OMIT_DESERIALIZE // int memJM = 0; /* Memory journal mode */ // #else // # define memJM 0 // #endif // int readOnly = 0; /* True if this is a read-only file */ // int journalFileSize; /* Bytes to allocate for each journal fd */ // char *zPathname = 0; /* Full path to database file */ // int nPathname = 0; /* Number of bytes in zPathname */ // int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ // int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ // u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ // const char *zUri = 0; /* URI args to copy */ // int nUriByte = 1; /* Number of bytes of URI args at *zUri */ // int nUri = 0; /* Number of URI parameters */ // /* Figure out how much space is required for each journal file-handle // ** (there are two of them, the main journal and the sub-journal). */ // journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); // /* Set the output variable to NULL in case an error occurs. */ // *ppPager = 0; // #ifndef SQLITE_OMIT_MEMORYDB // if( flags & PAGER_MEMORY ){ // memDb = 1; // if( zFilename && zFilename[0] ){ // zPathname = sqlite3DbStrDup(0, zFilename); // if( zPathname==0 ) return SQLITE_NOMEM; // nPathname = sqlite3Strlen30(zPathname); // zFilename = 0; // } // } // #endif // /* Compute and store the full pathname in an allocated buffer pointed // ** to by zPathname, length nPathname. Or, if this is a temporary file, // ** leave both nPathname and zPathname set to 0. // */ // if( zFilename && zFilename[0] ){ // const char *z; // nPathname = pVfs->mxPathname+1; // zPathname = sqlite3DbMallocRaw(0, nPathname*2); // if( zPathname==0 ){ // return SQLITE_NOMEM; // } // zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ // rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); // if( rc!=SQLITE_OK ){ // if( rc==SQLITE_OK_SYMLINK ){ // if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ // rc = SQLITE_CANTOPEN_SYMLINK; // }else{ // rc = SQLITE_OK; // } // } // } // nPathname = sqlite3Strlen30(zPathname); // z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; // while( *z ){ // z += strlen(z)+1; // z += strlen(z)+1; // nUri++; // } // nUriByte = (int)(&z[1] - zUri); // assert( nUriByte>=1 ); // if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ // /* This branch is taken when the journal path required by // ** the database being opened will be more than pVfs->mxPathname // ** bytes in length. This means the database cannot be opened, // ** as it will not be possible to open the journal file or even // ** check for a hot-journal before reading. // */ // rc = SQLITE_CANTOPEN_BKPT; // } // if( rc!=SQLITE_OK ){ // sqlite3DbFree(0, zPathname); // return rc; // } // } // /* Allocate memory for the Pager structure, PCache object, the // ** three file descriptors, the database file name and the journal // ** file name. The layout in memory is as follows: // ** // ** Pager object (sizeof(Pager) bytes) // ** PCache object (sqlite3PcacheSize() bytes) // ** Database file handle (pVfs->szOsFile bytes) // ** Sub-journal file handle (journalFileSize bytes) // ** Main journal file handle (journalFileSize bytes) // ** Ptr back to the Pager (sizeof(Pager*) bytes) // ** \0\0\0\0 database prefix (4 bytes) // ** Database file name (nPathname+1 bytes) // ** URI query parameters (nUriByte bytes) // ** Journal filename (nPathname+8+1 bytes) // ** WAL filename (nPathname+4+1 bytes) // ** \0\0\0 terminator (3 bytes) // ** // ** Some 3rd-party software, over which we have no control, depends on // ** the specific order of the filenames and the \0 separators between them // ** so that it can (for example) find the database filename given the WAL // ** filename without using the sqlite3_filename_database() API. This is a // ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party // ** software is in widespread use, so we try to avoid changing the filename // ** order and formatting if possible. In particular, the details of the // ** filename format expected by 3rd-party software should be as follows: // ** // ** - Main Database Path // ** - \0 // ** - Multiple URI components consisting of: // ** - Key // ** - \0 // ** - Value // ** - \0 // ** - \0 // ** - Journal Path // ** - \0 // ** - WAL Path (zWALName) // ** - \0 // ** // ** The sqlite3_create_filename() interface and the databaseFilename() utility // ** that is used by sqlite3_filename_database() and kin also depend on the // ** specific formatting and order of the various filenames, so if the format // ** changes here, be sure to change it there as well. // */ // pPtr = (u8 *)sqlite3MallocZero( // ROUND8(sizeof(*pPager)) + /* Pager structure */ // ROUND8(pcacheSize) + /* PCache object */ // ROUND8(pVfs->szOsFile) + /* The main db file */ // journalFileSize * 2 + /* The two journal files */ // sizeof(pPager) + /* Space to hold a pointer */ // 4 + /* Database prefix */ // nPathname + 1 + /* database filename */ // nUriByte + /* query parameters */ // nPathname + 8 + 1 + /* Journal filename */ // #ifndef SQLITE_OMIT_WAL // nPathname + 4 + 1 + /* WAL filename */ // #endif // 3 /* Terminator */ // ); // assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); // if( !pPtr ){ // sqlite3DbFree(0, zPathname); // return SQLITE_NOMEM; // } // pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); // pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); // pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); // pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; // pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; // assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); // memcpy(pPtr, &pPager, sizeof(pPager)); pPtr += sizeof(pPager); // /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ // pPtr += 4; /* Skip zero prefix */ // pPager->zFilename = (char*)pPtr; // if( nPathname>0 ){ // memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; // if( zUri ){ // memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; // }else{ // pPtr++; // } // } // /* Fill in Pager.zJournal */ // if( nPathname>0 ){ // pPager->zJournal = (char*)pPtr; // memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; // memcpy(pPtr, "-journal",8); pPtr += 8 + 1; // #ifdef SQLITE_ENABLE_8_3_NAMES // sqlite3FileSuffix3(zFilename,pPager->zJournal); // pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); // #endif // }else{ // pPager->zJournal = 0; // } // #ifndef SQLITE_OMIT_WAL // /* Fill in Pager.zWal */ // if( nPathname>0 ){ // pPager->zWal = (char*)pPtr; // memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; // memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; // #ifdef SQLITE_ENABLE_8_3_NAMES // sqlite3FileSuffix3(zFilename, pPager->zWal); // pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); // #endif // }else{ // pPager->zWal = 0; // } // #endif // (void)pPtr; /* Suppress warning about unused pPtr value */ // if( nPathname ) sqlite3DbFree(0, zPathname); // pPager->pVfs = pVfs; // pPager->vfsFlags = vfsFlags; // /* Open the pager file. // */ // if( zFilename && zFilename[0] ){ // int fout = 0; /* VFS flags returned by xOpen() */ // rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); // assert( !memDb ); // #ifndef SQLITE_OMIT_DESERIALIZE // pPager->memVfs = memJM = (fout&SQLITE_OPEN_MEMORY)!=0; // #endif // readOnly = (fout&SQLITE_OPEN_READONLY)!=0; // /* If the file was successfully opened for read/write access, // ** choose a default page size in case we have to create the // ** database file. The default page size is the maximum of: // ** // ** + SQLITE_DEFAULT_PAGE_SIZE, // ** + The value returned by sqlite3OsSectorSize() // ** + The largest page size that can be written atomically. // */ // if( rc==SQLITE_OK ){ // int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); // if( !readOnly ){ // setSectorSize(pPager); // assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); // if( szPageDfltsectorSize ){ // if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ // szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; // }else{ // szPageDflt = (u32)pPager->sectorSize; // } // } // #ifdef SQLITE_ENABLE_ATOMIC_WRITE // { // int ii; // assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); // assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); // assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); // for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ // if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ // szPageDflt = ii; // } // } // } // #endif // } // pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); // if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 // || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ // vfsFlags |= SQLITE_OPEN_READONLY; // goto act_like_temp_file; // } // } // }else{ // /* If a temporary file is requested, it is not opened immediately. // ** In this case we accept the default page size and delay actually // ** opening the file until the first call to OsWrite(). // ** // ** This branch is also run for an in-memory database. An in-memory // ** database is the same as a temp-file that is never written out to // ** disk and uses an in-memory rollback journal. // ** // ** This branch also runs for files marked as immutable. // */ // act_like_temp_file: // tempFile = 1; // pPager->eState = PAGER_READER; /* Pretend we already have a lock */ // pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ // pPager->noLock = 1; /* Do no locking */ // readOnly = (vfsFlags&SQLITE_OPEN_READONLY); // } // /* The following call to PagerSetPagesize() serves to set the value of // ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. // */ // if( rc==SQLITE_OK ){ // assert( pPager->memDb==0 ); // rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); // testcase( rc!=SQLITE_OK ); // } // /* Initialize the PCache object. */ // if( rc==SQLITE_OK ){ // nExtra = ROUND8(nExtra); // assert( nExtra>=8 && nExtra<1000 ); // rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, // !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); // } // /* If an error occurred above, free the Pager structure and close the file. // */ // if( rc!=SQLITE_OK ){ // sqlite3OsClose(pPager->fd); // sqlite3PageFree(pPager->pTmpSpace); // sqlite3_free(pPager); // return rc; // } // PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); // IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) // pPager->useJournal = (u8)useJournal; // /* pPager->stmtOpen = 0; */ // /* pPager->stmtInUse = 0; */ // /* pPager->nRef = 0; */ // /* pPager->stmtSize = 0; */ // /* pPager->stmtJSize = 0; */ // /* pPager->nPage = 0; */ // pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; // /* pPager->state = PAGER_UNLOCK; */ // /* pPager->errMask = 0; */ // pPager->tempFile = (u8)tempFile; // assert( tempFile==PAGER_LOCKINGMODE_NORMAL // || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); // assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); // pPager->exclusiveMode = (u8)tempFile; // pPager->changeCountDone = pPager->tempFile; // pPager->memDb = (u8)memDb; // pPager->readOnly = (u8)readOnly; // assert( useJournal || pPager->tempFile ); // pPager->noSync = pPager->tempFile; // if( pPager->noSync ){ // assert( pPager->fullSync==0 ); // assert( pPager->extraSync==0 ); // assert( pPager->syncFlags==0 ); // assert( pPager->walSyncFlags==0 ); // }else{ // pPager->fullSync = 1; // pPager->extraSync = 0; // pPager->syncFlags = SQLITE_SYNC_NORMAL; // pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); // } // /* pPager->pFirst = 0; */ // /* pPager->pFirstSynced = 0; */ // /* pPager->pLast = 0; */ // pPager->nExtra = (u16)nExtra; // pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; // assert( isOpen(pPager->fd) || tempFile ); // setSectorSize(pPager); // if( !useJournal ){ // pPager->journalMode = PAGER_JOURNALMODE_OFF; // }else if( memDb || memJM ){ // pPager->journalMode = PAGER_JOURNALMODE_MEMORY; // } // /* pPager->xBusyHandler = 0; */ // /* pPager->pBusyHandlerArg = 0; */ // pPager->xReiniter = xReinit; // setGetterMethod(pPager); // /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ // /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ // *ppPager = pPager; // return SQLITE_OK; // } // /* // ** Return the sqlite3_file for the main database given the name // ** of the corresonding WAL or Journal name as passed into // ** xOpen. // */ // sqlite3_file *sqlite3_database_file_object(const char *zName){ // Pager *pPager; // while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ // zName--; // } // pPager = *(Pager**)(zName - 4 - sizeof(Pager*)); // return pPager->fd; // } // /* // ** This function is called after transitioning from PAGER_UNLOCK to // ** PAGER_SHARED state. It tests if there is a hot journal present in // ** the file-system for the given pager. A hot journal is one that // ** needs to be played back. According to this function, a hot-journal // ** file exists if the following criteria are met: // ** // ** * The journal file exists in the file system, and // ** * No process holds a RESERVED or greater lock on the database file, and // ** * The database file itself is greater than 0 bytes in size, and // ** * The first byte of the journal file exists and is not 0x00. // ** // ** If the current size of the database file is 0 but a journal file // ** exists, that is probably an old journal left over from a prior // ** database with the same name. In this case the journal file is // ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK // ** is returned. // ** // ** This routine does not check if there is a super-journal filename // ** at the end of the file. If there is, and that super-journal file // ** does not exist, then the journal file is not really hot. In this // ** case this routine will return a false-positive. The pager_playback() // ** routine will discover that the journal file is not really hot and // ** will not roll it back. // ** // ** If a hot-journal file is found to exist, *pExists is set to 1 and // ** SQLITE_OK returned. If no hot-journal file is present, *pExists is // ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying // ** to determine whether or not a hot-journal file exists, the IO error // ** code is returned and the value of *pExists is undefined. // */ // static int hasHotJournal(Pager *pPager, int *pExists){ // sqlite3_vfs * const pVfs = pPager->pVfs; // int rc = SQLITE_OK; /* Return code */ // int exists = 1; /* True if a journal file is present */ // int jrnlOpen = !!isOpen(pPager->jfd); // assert( pPager->useJournal ); // assert( isOpen(pPager->fd) ); // assert( pPager->eState==PAGER_OPEN ); // assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & // SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN // )); // *pExists = 0; // if( !jrnlOpen ){ // rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); // } // if( rc==SQLITE_OK && exists ){ // int locked = 0; /* True if some process holds a RESERVED lock */ // /* Race condition here: Another process might have been holding the // ** the RESERVED lock and have a journal open at the sqlite3OsAccess() // ** call above, but then delete the journal and drop the lock before // ** we get to the following sqlite3OsCheckReservedLock() call. If that // ** is the case, this routine might think there is a hot journal when // ** in fact there is none. This results in a false-positive which will // ** be dealt with by the playback routine. Ticket #3883. // */ // rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); // if( rc==SQLITE_OK && !locked ){ // Pgno nPage; /* Number of pages in database file */ // assert( pPager->tempFile==0 ); // rc = pagerPagecount(pPager, &nPage); // if( rc==SQLITE_OK ){ // /* If the database is zero pages in size, that means that either (1) the // ** journal is a remnant from a prior database with the same name where // ** the database file but not the journal was deleted, or (2) the initial // ** transaction that populates a new database is being rolled back. // ** In either case, the journal file can be deleted. However, take care // ** not to delete the journal file if it is already open due to // ** journal_mode=PERSIST. // */ // if( nPage==0 && !jrnlOpen ){ // sqlite3BeginBenignMalloc(); // if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ // sqlite3OsDelete(pVfs, pPager->zJournal, 0); // if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); // } // sqlite3EndBenignMalloc(); // }else{ // /* The journal file exists and no other connection has a reserved // ** or greater lock on the database file. Now check that there is // ** at least one non-zero bytes at the start of the journal file. // ** If there is, then we consider this journal to be hot. If not, // ** it can be ignored. // */ // if( !jrnlOpen ){ // int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; // rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); // } // if( rc==SQLITE_OK ){ // u8 first = 0; // rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); // if( rc==SQLITE_IOERR_SHORT_READ ){ // rc = SQLITE_OK; // } // if( !jrnlOpen ){ // sqlite3OsClose(pPager->jfd); // } // *pExists = (first!=0); // }else if( rc==SQLITE_CANTOPEN ){ // /* If we cannot open the rollback journal file in order to see if // ** it has a zero header, that might be due to an I/O error, or // ** it might be due to the race condition described above and in // ** ticket #3883. Either way, assume that the journal is hot. // ** This might be a false positive. But if it is, then the // ** automatic journal playback and recovery mechanism will deal // ** with it under an EXCLUSIVE lock where we do not need to // ** worry so much with race conditions. // */ // *pExists = 1; // rc = SQLITE_OK; // } // } // } // } // } // return rc; // } // /* // ** This function is called to obtain a shared lock on the database file. // ** It is illegal to call sqlite3PagerGet() until after this function // ** has been successfully called. If a shared-lock is already held when // ** this function is called, it is a no-op. // ** // ** The following operations are also performed by this function. // ** // ** 1) If the pager is currently in PAGER_OPEN state (no lock held // ** on the database file), then an attempt is made to obtain a // ** SHARED lock on the database file. Immediately after obtaining // ** the SHARED lock, the file-system is checked for a hot-journal, // ** which is played back if present. Following any hot-journal // ** rollback, the contents of the cache are validated by checking // ** the 'change-counter' field of the database file header and // ** discarded if they are found to be invalid. // ** // ** 2) If the pager is running in exclusive-mode, and there are currently // ** no outstanding references to any pages, and is in the error state, // ** then an attempt is made to clear the error state by discarding // ** the contents of the page cache and rolling back any open journal // ** file. // ** // ** If everything is successful, SQLITE_OK is returned. If an IO error // ** occurs while locking the database, checking for a hot-journal file or // ** rolling back a journal file, the IO error code is returned. // */ // int sqlite3PagerSharedLock(Pager *pPager){ // int rc = SQLITE_OK; /* Return code */ // /* This routine is only called from b-tree and only when there are no // ** outstanding pages. This implies that the pager state should either // ** be OPEN or READER. READER is only possible if the pager is or was in // ** exclusive access mode. */ // assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); // assert( assert_pager_state(pPager) ); // assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); // assert( pPager->errCode==SQLITE_OK ); // if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ // int bHotJournal = 1; /* True if there exists a hot journal-file */ // assert( !MEMDB ); // assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); // rc = pager_wait_on_lock(pPager, SHARED_LOCK); // if( rc!=SQLITE_OK ){ // assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); // goto failed; // } // /* If a journal file exists, and there is no RESERVED lock on the // ** database file, then it either needs to be played back or deleted. // */ // if( pPager->eLock<=SHARED_LOCK ){ // rc = hasHotJournal(pPager, &bHotJournal); // } // if( rc!=SQLITE_OK ){ // goto failed; // } // if( bHotJournal ){ // if( pPager->readOnly ){ // rc = SQLITE_READONLY_ROLLBACK; // goto failed; // } // /* Get an EXCLUSIVE lock on the database file. At this point it is // ** important that a RESERVED lock is not obtained on the way to the // ** EXCLUSIVE lock. If it were, another process might open the // ** database file, detect the RESERVED lock, and conclude that the // ** database is safe to read while this process is still rolling the // ** hot-journal back. // ** // ** Because the intermediate RESERVED lock is not requested, any // ** other process attempting to access the database file will get to // ** this point in the code and fail to obtain its own EXCLUSIVE lock // ** on the database file. // ** // ** Unless the pager is in locking_mode=exclusive mode, the lock is // ** downgraded to SHARED_LOCK before this function returns. // */ // rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); // if( rc!=SQLITE_OK ){ // goto failed; // } // /* If it is not already open and the file exists on disk, open the // ** journal for read/write access. Write access is required because // ** in exclusive-access mode the file descriptor will be kept open // ** and possibly used for a transaction later on. Also, write-access // ** is usually required to finalize the journal in journal_mode=persist // ** mode (and also for journal_mode=truncate on some systems). // ** // ** If the journal does not exist, it usually means that some // ** other connection managed to get in and roll it back before // ** this connection obtained the exclusive lock above. Or, it // ** may mean that the pager was in the error-state when this // ** function was called and the journal file does not exist. // */ // if( !isOpen(pPager->jfd) ){ // sqlite3_vfs * const pVfs = pPager->pVfs; // int bExists; /* True if journal file exists */ // rc = sqlite3OsAccess( // pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); // if( rc==SQLITE_OK && bExists ){ // int fout = 0; // int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; // assert( !pPager->tempFile ); // rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); // assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); // if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ // rc = SQLITE_CANTOPEN_BKPT; // sqlite3OsClose(pPager->jfd); // } // } // } // /* Playback and delete the journal. Drop the database write // ** lock and reacquire the read lock. Purge the cache before // ** playing back the hot-journal so that we don't end up with // ** an inconsistent cache. Sync the hot journal before playing // ** it back since the process that crashed and left the hot journal // ** probably did not sync it and we are required to always sync // ** the journal before playing it back. // */ // if( isOpen(pPager->jfd) ){ // assert( rc==SQLITE_OK ); // rc = pagerSyncHotJournal(pPager); // if( rc==SQLITE_OK ){ // rc = pager_playback(pPager, !pPager->tempFile); // pPager->eState = PAGER_OPEN; // } // }else if( !pPager->exclusiveMode ){ // pagerUnlockDb(pPager, SHARED_LOCK); // } // if( rc!=SQLITE_OK ){ // /* This branch is taken if an error occurs while trying to open // ** or roll back a hot-journal while holding an EXCLUSIVE lock. The // ** pager_unlock() routine will be called before returning to unlock // ** the file. If the unlock attempt fails, then Pager.eLock must be // ** set to UNKNOWN_LOCK (see the comment above the #define for // ** UNKNOWN_LOCK above for an explanation). // ** // ** In order to get pager_unlock() to do this, set Pager.eState to // ** PAGER_ERROR now. This is not actually counted as a transition // ** to ERROR state in the state diagram at the top of this file, // ** since we know that the same call to pager_unlock() will very // ** shortly transition the pager object to the OPEN state. Calling // ** assert_pager_state() would fail now, as it should not be possible // ** to be in ERROR state when there are zero outstanding page // ** references. // */ // pager_error(pPager, rc); // goto failed; // } // assert( pPager->eState==PAGER_OPEN ); // assert( (pPager->eLock==SHARED_LOCK) // || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) // ); // } // if( !pPager->tempFile && pPager->hasHeldSharedLock ){ // /* The shared-lock has just been acquired then check to // ** see if the database has been modified. If the database has changed, // ** flush the cache. The hasHeldSharedLock flag prevents this from // ** occurring on the very first access to a file, in order to save a // ** single unnecessary sqlite3OsRead() call at the start-up. // ** // ** Database changes are detected by looking at 15 bytes beginning // ** at offset 24 into the file. The first 4 of these 16 bytes are // ** a 32-bit counter that is incremented with each change. The // ** other bytes change randomly with each file change when // ** a codec is in use. // ** // ** There is a vanishingly small chance that a change will not be // ** detected. The chance of an undetected change is so small that // ** it can be neglected. // */ // char dbFileVers[sizeof(pPager->dbFileVers)]; // IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); // rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); // if( rc!=SQLITE_OK ){ // if( rc!=SQLITE_IOERR_SHORT_READ ){ // goto failed; // } // memset(dbFileVers, 0, sizeof(dbFileVers)); // } // if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ // pager_reset(pPager); // /* Unmap the database file. It is possible that external processes // ** may have truncated the database file and then extended it back // ** to its original size while this process was not holding a lock. // ** In this case there may exist a Pager.pMap mapping that appears // ** to be the right size but is not actually valid. Avoid this // ** possibility by unmapping the db here. */ // if( USEFETCH(pPager) ){ // sqlite3OsUnfetch(pPager->fd, 0, 0); // } // } // } // /* If there is a WAL file in the file-system, open this database in WAL // ** mode. Otherwise, the following function call is a no-op. // */ // rc = pagerOpenWalIfPresent(pPager); // #ifndef SQLITE_OMIT_WAL // assert( pPager->pWal==0 || rc==SQLITE_OK ); // #endif // } // if( pagerUseWal(pPager) ){ // assert( rc==SQLITE_OK ); // rc = pagerBeginReadTransaction(pPager); // } // if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ // rc = pagerPagecount(pPager, &pPager->dbSize); // } // failed: // if( rc!=SQLITE_OK ){ // assert( !MEMDB ); // pager_unlock(pPager); // assert( pPager->eState==PAGER_OPEN ); // }else{ // pPager->eState = PAGER_READER; // pPager->hasHeldSharedLock = 1; // } // return rc; // } // /* // ** If the reference count has reached zero, rollback any active // ** transaction and unlock the pager. // ** // ** Except, in locking_mode=EXCLUSIVE when there is nothing to in // ** the rollback journal, the unlock is not performed and there is // ** nothing to rollback, so this routine is a no-op. // */ // static void pagerUnlockIfUnused(Pager *pPager){ // if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ // assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ // pagerUnlockAndRollback(pPager); // } // } // /* // ** The page getter methods each try to acquire a reference to a // ** page with page number pgno. If the requested reference is // ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. // ** // ** There are different implementations of the getter method depending // ** on the current state of the pager. // ** // ** getPageNormal() -- The normal getter // ** getPageError() -- Used if the pager is in an error state // ** getPageMmap() -- Used if memory-mapped I/O is enabled // ** // ** If the requested page is already in the cache, it is returned. // ** Otherwise, a new page object is allocated and populated with data // ** read from the database file. In some cases, the pcache module may // ** choose not to allocate a new page object and may reuse an existing // ** object with no outstanding references. // ** // ** The extra data appended to a page is always initialized to zeros the // ** first time a page is loaded into memory. If the page requested is // ** already in the cache when this function is called, then the extra // ** data is left as it was when the page object was last used. // ** // ** If the database image is smaller than the requested page or if // ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the // ** requested page is not already stored in the cache, then no // ** actual disk read occurs. In this case the memory image of the // ** page is initialized to all zeros. // ** // ** If PAGER_GET_NOCONTENT is true, it means that we do not care about // ** the contents of the page. This occurs in two scenarios: // ** // ** a) When reading a free-list leaf page from the database, and // ** // ** b) When a savepoint is being rolled back and we need to load // ** a new page into the cache to be filled with the data read // ** from the savepoint journal. // ** // ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead // ** of being read from the database. Additionally, the bits corresponding // ** to pgno in Pager.pInJournal (bitvec of pages already written to the // ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open // ** savepoints are set. This means if the page is made writable at any // ** point in the future, using a call to sqlite3PagerWrite(), its contents // ** will not be journaled. This saves IO. // ** // ** The acquisition might fail for several reasons. In all cases, // ** an appropriate error code is returned and *ppPage is set to NULL. // ** // ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt // ** to find a page in the in-memory cache first. If the page is not already // ** in memory, this routine goes to disk to read it in whereas Lookup() // ** just returns 0. This routine acquires a read-lock the first time it // ** has to go to disk, and could also playback an old journal if necessary. // ** Since Lookup() never goes to disk, it never has to deal with locks // ** or journal files. // */ // static int getPageNormal( // Pager *pPager, /* The pager open on the database file */ // Pgno pgno, /* Page number to fetch */ // DbPage **ppPage, /* Write a pointer to the page here */ // int flags /* PAGER_GET_XXX flags */ // ){ // int rc = SQLITE_OK; // PgHdr *pPg; // u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ // sqlite3_pcache_page *pBase; // assert( pPager->errCode==SQLITE_OK ); // assert( pPager->eState>=PAGER_READER ); // assert( assert_pager_state(pPager) ); // assert( pPager->hasHeldSharedLock==1 ); // if( pgno==0 ) return SQLITE_CORRUPT_BKPT; // pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); // if( pBase==0 ){ // pPg = 0; // rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); // if( rc!=SQLITE_OK ) goto pager_acquire_err; // if( pBase==0 ){ // rc = SQLITE_NOMEM; // goto pager_acquire_err; // } // } // pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); // assert( pPg==(*ppPage) ); // assert( pPg->pgno==pgno ); // assert( pPg->pPager==pPager || pPg->pPager==0 ); // noContent = (flags & PAGER_GET_NOCONTENT)!=0; // if( pPg->pPager && !noContent ){ // /* In this case the pcache already contains an initialized copy of // ** the page. Return without further ado. */ // assert( pgno!=PAGER_MJ_PGNO(pPager) ); // pPager->aStat[PAGER_STAT_HIT]++; // return SQLITE_OK; // }else{ // /* The pager cache has created a new page. Its content needs to // ** be initialized. But first some error checks: // ** // ** (*) obsolete. Was: maximum page number is 2^31 // ** (2) Never try to fetch the locking page // */ // if( pgno==PAGER_MJ_PGNO(pPager) ){ // rc = SQLITE_CORRUPT_BKPT; // goto pager_acquire_err; // } // pPg->pPager = pPager; // assert( !isOpen(pPager->fd) || !MEMDB ); // if( !isOpen(pPager->fd) || pPager->dbSizepPager->mxPgno ){ // rc = SQLITE_FULL; // goto pager_acquire_err; // } // if( noContent ){ // /* Failure to set the bits in the InJournal bit-vectors is benign. // ** It merely means that we might do some extra work to journal a // ** page that does not need to be journaled. Nevertheless, be sure // ** to test the case where a malloc error occurs while trying to set // ** a bit in a bit vector. // */ // sqlite3BeginBenignMalloc(); // if( pgno<=pPager->dbOrigSize ){ // TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); // testcase( rc==SQLITE_NOMEM ); // } // TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); // testcase( rc==SQLITE_NOMEM ); // sqlite3EndBenignMalloc(); // } // memset(pPg->pData, 0, pPager->pageSize); // IOTRACE(("ZERO %p %d\n", pPager, pgno)); // }else{ // assert( pPg->pPager==pPager ); // pPager->aStat[PAGER_STAT_MISS]++; // rc = readDbPage(pPg); // if( rc!=SQLITE_OK ){ // goto pager_acquire_err; // } // } // pager_set_pagehash(pPg); // } // return SQLITE_OK; // pager_acquire_err: // assert( rc!=SQLITE_OK ); // if( pPg ){ // sqlite3PcacheDrop(pPg); // } // pagerUnlockIfUnused(pPager); // *ppPage = 0; // return rc; // } // #if SQLITE_MAX_MMAP_SIZE>0 // /* The page getter for when memory-mapped I/O is enabled */ // static int getPageMMap( // Pager *pPager, /* The pager open on the database file */ // Pgno pgno, /* Page number to fetch */ // DbPage **ppPage, /* Write a pointer to the page here */ // int flags /* PAGER_GET_XXX flags */ // ){ // int rc = SQLITE_OK; // PgHdr *pPg = 0; // u32 iFrame = 0; /* Frame to read from WAL file */ // /* It is acceptable to use a read-only (mmap) page for any page except // ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY // ** flag was specified by the caller. And so long as the db is not a // ** temporary or in-memory database. */ // const int bMmapOk = (pgno>1 // && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) // ); // assert( USEFETCH(pPager) ); // /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here // ** allows the compiler optimizer to reuse the results of the "pgno>1" // ** test in the previous statement, and avoid testing pgno==0 in the // ** common case where pgno is large. */ // if( pgno<=1 && pgno==0 ){ // return SQLITE_CORRUPT_BKPT; // } // assert( pPager->eState>=PAGER_READER ); // assert( assert_pager_state(pPager) ); // assert( pPager->hasHeldSharedLock==1 ); // assert( pPager->errCode==SQLITE_OK ); // if( bMmapOk && pagerUseWal(pPager) ){ // rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); // if( rc!=SQLITE_OK ){ // *ppPage = 0; // return rc; // } // } // if( bMmapOk && iFrame==0 ){ // void *pData = 0; // rc = sqlite3OsFetch(pPager->fd, // (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData // ); // if( rc==SQLITE_OK && pData ){ // if( pPager->eState>PAGER_READER || pPager->tempFile ){ // pPg = sqlite3PagerLookup(pPager, pgno); // } // if( pPg==0 ){ // rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); // }else{ // sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); // } // if( pPg ){ // assert( rc==SQLITE_OK ); // *ppPage = pPg; // return SQLITE_OK; // } // } // if( rc!=SQLITE_OK ){ // *ppPage = 0; // return rc; // } // } // return getPageNormal(pPager, pgno, ppPage, flags); // } // #endif /* SQLITE_MAX_MMAP_SIZE>0 */ // /* The page getter method for when the pager is an error state */ // static int getPageError( // Pager *pPager, /* The pager open on the database file */ // Pgno pgno, /* Page number to fetch */ // DbPage **ppPage, /* Write a pointer to the page here */ // int flags /* PAGER_GET_XXX flags */ // ){ // UNUSED_PARAMETER(pgno); // UNUSED_PARAMETER(flags); // assert( pPager->errCode!=SQLITE_OK ); // *ppPage = 0; // return pPager->errCode; // } // /* Dispatch all page fetch requests to the appropriate getter method. // */ // int sqlite3PagerGet( // Pager *pPager, /* The pager open on the database file */ // Pgno pgno, /* Page number to fetch */ // DbPage **ppPage, /* Write a pointer to the page here */ // int flags /* PAGER_GET_XXX flags */ // ){ // return pPager->xGet(pPager, pgno, ppPage, flags); // } // /* // ** Acquire a page if it is already in the in-memory cache. Do // ** not read the page from disk. Return a pointer to the page, // ** or 0 if the page is not in cache. // ** // ** See also sqlite3PagerGet(). The difference between this routine // ** and sqlite3PagerGet() is that _get() will go to the disk and read // ** in the page if the page is not already in cache. This routine // ** returns NULL if the page is not in cache or if a disk I/O error // ** has ever happened. // */ // DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ // sqlite3_pcache_page *pPage; // assert( pPager!=0 ); // assert( pgno!=0 ); // assert( pPager->pPCache!=0 ); // pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); // assert( pPage==0 || pPager->hasHeldSharedLock ); // if( pPage==0 ) return 0; // return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); // } // /* // ** Release a page reference. // ** // ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be // ** used if we know that the page being released is not the last page. // ** The btree layer always holds page1 open until the end, so these first // ** to routines can be used to release any page other than BtShared.pPage1. // ** // ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine // ** checks the total number of outstanding pages and if the number of // ** pages reaches zero it drops the database lock. // */ // void sqlite3PagerUnrefNotNull(DbPage *pPg){ // TESTONLY( Pager *pPager = pPg->pPager; ) // assert( pPg!=0 ); // if( pPg->flags & PGHDR_MMAP ){ // assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ // pagerReleaseMapPage(pPg); // }else{ // sqlite3PcacheRelease(pPg); // } // /* Do not use this routine to release the last reference to page1 */ // assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); // } // void sqlite3PagerUnref(DbPage *pPg){ // if( pPg ) sqlite3PagerUnrefNotNull(pPg); // } // void sqlite3PagerUnrefPageOne(DbPage *pPg){ // Pager *pPager; // assert( pPg!=0 ); // assert( pPg->pgno==1 ); // assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ // pPager = pPg->pPager; // sqlite3PcacheRelease(pPg); // pagerUnlockIfUnused(pPager); // } // /* // ** This function is called at the start of every write transaction. // ** There must already be a RESERVED or EXCLUSIVE lock on the database // ** file when this routine is called. // ** // ** Open the journal file for pager pPager and write a journal header // ** to the start of it. If there are active savepoints, open the sub-journal // ** as well. This function is only used when the journal file is being // ** opened to write a rollback log for a transaction. It is not used // ** when opening a hot journal file to roll it back. // ** // ** If the journal file is already open (as it may be in exclusive mode), // ** then this function just writes a journal header to the start of the // ** already open file. // ** // ** Whether or not the journal file is opened by this function, the // ** Pager.pInJournal bitvec structure is allocated. // ** // ** Return SQLITE_OK if everything is successful. Otherwise, return // ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or // ** an IO error code if opening or writing the journal file fails. // */ // static int pager_open_journal(Pager *pPager){ // int rc = SQLITE_OK; /* Return code */ // sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ // assert( pPager->eState==PAGER_WRITER_LOCKED ); // assert( assert_pager_state(pPager) ); // assert( pPager->pInJournal==0 ); // /* If already in the error state, this function is a no-op. But on // ** the other hand, this routine is never called if we are already in // ** an error state. */ // if( NEVER(pPager->errCode) ) return pPager->errCode; // if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ // pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); // if( pPager->pInJournal==0 ){ // return SQLITE_NOMEM; // } // /* Open the journal file if it is not already open. */ // if( !isOpen(pPager->jfd) ){ // if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ // sqlite3MemJournalOpen(pPager->jfd); // }else{ // int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; // int nSpill; // if( pPager->tempFile ){ // flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); // nSpill = sqlite3Config.nStmtSpill; // }else{ // flags |= SQLITE_OPEN_MAIN_JOURNAL; // nSpill = jrnlBufferSize(pPager); // } // /* Verify that the database still has the same name as it did when // ** it was originally opened. */ // rc = databaseIsUnmoved(pPager); // if( rc==SQLITE_OK ){ // rc = sqlite3JournalOpen ( // pVfs, pPager->zJournal, pPager->jfd, flags, nSpill // ); // } // } // assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); // } // /* Write the first journal header to the journal file and open // ** the sub-journal if necessary. // */ // if( rc==SQLITE_OK ){ // /* TODO: Check if all of these are really required. */ // pPager->nRec = 0; // pPager->journalOff = 0; // pPager->setSuper = 0; // pPager->journalHdr = 0; // rc = writeJournalHdr(pPager); // } // } // if( rc!=SQLITE_OK ){ // sqlite3BitvecDestroy(pPager->pInJournal); // pPager->pInJournal = 0; // }else{ // assert( pPager->eState==PAGER_WRITER_LOCKED ); // pPager->eState = PAGER_WRITER_CACHEMOD; // } // return rc; // } // /* // ** Begin a write-transaction on the specified pager object. If a // ** write-transaction has already been opened, this function is a no-op. // ** // ** If the exFlag argument is false, then acquire at least a RESERVED // ** lock on the database file. If exFlag is true, then acquire at least // ** an EXCLUSIVE lock. If such a lock is already held, no locking // ** functions need be called. // ** // ** If the subjInMemory argument is non-zero, then any sub-journal opened // ** within this transaction will be opened as an in-memory file. This // ** has no effect if the sub-journal is already opened (as it may be when // ** running in exclusive mode) or if the transaction does not require a // ** sub-journal. If the subjInMemory argument is zero, then any required // ** sub-journal is implemented in-memory if pPager is an in-memory database, // ** or using a temporary file otherwise. // */ // int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ // int rc = SQLITE_OK; // if( pPager->errCode ) return pPager->errCode; // assert( pPager->eState>=PAGER_READER && pPager->eStatesubjInMemory = (u8)subjInMemory; // if( pPager->eState==PAGER_READER ){ // assert( pPager->pInJournal==0 ); // if( pagerUseWal(pPager) ){ // /* If the pager is configured to use locking_mode=exclusive, and an // ** exclusive lock on the database is not already held, obtain it now. // */ // if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ // rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); // if( rc!=SQLITE_OK ){ // return rc; // } // (void)sqlite3WalExclusiveMode(pPager->pWal, 1); // } // /* Grab the write lock on the log file. If successful, upgrade to // ** PAGER_RESERVED state. Otherwise, return an error code to the caller. // ** The busy-handler is not invoked if another connection already // ** holds the write-lock. If possible, the upper layer will call it. // */ // rc = sqlite3WalBeginWriteTransaction(pPager->pWal); // }else{ // /* Obtain a RESERVED lock on the database file. If the exFlag parameter // ** is true, then immediately upgrade this to an EXCLUSIVE lock. The // ** busy-handler callback can be used when upgrading to the EXCLUSIVE // ** lock, but not when obtaining the RESERVED lock. // */ // rc = pagerLockDb(pPager, RESERVED_LOCK); // if( rc==SQLITE_OK && exFlag ){ // rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); // } // } // if( rc==SQLITE_OK ){ // /* Change to WRITER_LOCKED state. // ** // ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD // ** when it has an open transaction, but never to DBMOD or FINISHED. // ** This is because in those states the code to roll back savepoint // ** transactions may copy data from the sub-journal into the database // ** file as well as into the page cache. Which would be incorrect in // ** WAL mode. // */ // pPager->eState = PAGER_WRITER_LOCKED; // pPager->dbHintSize = pPager->dbSize; // pPager->dbFileSize = pPager->dbSize; // pPager->dbOrigSize = pPager->dbSize; // pPager->journalOff = 0; // } // assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); // assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); // assert( assert_pager_state(pPager) ); // } // PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); // return rc; // } // /* // ** Write page pPg onto the end of the rollback journal. // */ // static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // int rc; // u32 cksum; // char *pData2; // i64 iOff = pPager->journalOff; // /* We should never write to the journal file the page that // ** contains the database locks. The following assert verifies // ** that we do not. */ // assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); // assert( pPager->journalHdr<=pPager->journalOff ); // pData2 = pPg->pData; // cksum = pager_cksum(pPager, (u8*)pData2); // /* Even if an IO or diskfull error occurs while journalling the // ** page in the block above, set the need-sync flag for the page. // ** Otherwise, when the transaction is rolled back, the logic in // ** playback_one_page() will think that the page needs to be restored // ** in the database file. And if an IO error occurs while doing so, // ** then corruption may follow. // */ // pPg->flags |= PGHDR_NEED_SYNC; // rc = write32bits(pPager->jfd, iOff, pPg->pgno); // if( rc!=SQLITE_OK ) return rc; // rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); // if( rc!=SQLITE_OK ) return rc; // rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); // if( rc!=SQLITE_OK ) return rc; // IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, // pPager->journalOff, pPager->pageSize)); // PAGER_INCR(sqlite3_pager_writej_count); // PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", // PAGERID(pPager), pPg->pgno, // ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); // pPager->journalOff += 8 + pPager->pageSize; // pPager->nRec++; // assert( pPager->pInJournal!=0 ); // rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); // testcase( rc==SQLITE_NOMEM ); // assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); // rc |= addToSavepointBitvecs(pPager, pPg->pgno); // assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); // return rc; // } // /* // ** Mark a single data page as writeable. The page is written into the // ** main journal or sub-journal as required. If the page is written into // ** one of the journals, the corresponding bit is set in the // ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs // ** of any open savepoints as appropriate. // */ // static int pager_write(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // int rc = SQLITE_OK; // /* This routine is not called unless a write-transaction has already // ** been started. The journal file may or may not be open at this point. // ** It is never called in the ERROR state. // */ // assert( pPager->eState==PAGER_WRITER_LOCKED // || pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // ); // assert( assert_pager_state(pPager) ); // assert( pPager->errCode==0 ); // assert( pPager->readOnly==0 ); // CHECK_PAGE(pPg); // /* The journal file needs to be opened. Higher level routines have already // ** obtained the necessary locks to begin the write-transaction, but the // ** rollback journal might not yet be open. Open it now if this is the case. // ** // ** This is done before calling sqlite3PcacheMakeDirty() on the page. // ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then // ** an error might occur and the pager would end up in WRITER_LOCKED state // ** with pages marked as dirty in the cache. // */ // if( pPager->eState==PAGER_WRITER_LOCKED ){ // rc = pager_open_journal(pPager); // if( rc!=SQLITE_OK ) return rc; // } // assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); // assert( assert_pager_state(pPager) ); // /* Mark the page that is about to be modified as dirty. */ // sqlite3PcacheMakeDirty(pPg); // /* If a rollback journal is in use, them make sure the page that is about // ** to change is in the rollback journal, or if the page is a new page off // ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. // */ // assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); // if( pPager->pInJournal!=0 // && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 // ){ // assert( pagerUseWal(pPager)==0 ); // if( pPg->pgno<=pPager->dbOrigSize ){ // rc = pagerAddPageToRollbackJournal(pPg); // if( rc!=SQLITE_OK ){ // return rc; // } // }else{ // if( pPager->eState!=PAGER_WRITER_DBMOD ){ // pPg->flags |= PGHDR_NEED_SYNC; // } // PAGERTRACE(("APPEND %d page %d needSync=%d\n", // PAGERID(pPager), pPg->pgno, // ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); // } // } // /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list // ** and before writing the page into the rollback journal. Wait until now, // ** after the page has been successfully journalled, before setting the // ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. // */ // pPg->flags |= PGHDR_WRITEABLE; // /* If the statement journal is open and the page is not in it, // ** then write the page into the statement journal. // */ // if( pPager->nSavepoint>0 ){ // rc = subjournalPageIfRequired(pPg); // } // /* Update the database size and return. */ // if( pPager->dbSizepgno ){ // pPager->dbSize = pPg->pgno; // } // return rc; // } // /* // ** This is a variant of sqlite3PagerWrite() that runs when the sector size // ** is larger than the page size. SQLite makes the (reasonable) assumption that // ** all bytes of a sector are written together by hardware. Hence, all bytes of // ** a sector need to be journalled in case of a power loss in the middle of // ** a write. // ** // ** Usually, the sector size is less than or equal to the page size, in which // ** case pages can be individually written. This routine only runs in the // ** exceptional case where the page size is smaller than the sector size. // */ // static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ // int rc = SQLITE_OK; /* Return code */ // Pgno nPageCount; /* Total number of pages in database file */ // Pgno pg1; /* First page of the sector pPg is located on. */ // int nPage = 0; /* Number of pages starting at pg1 to journal */ // int ii; /* Loop counter */ // int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ // Pager *pPager = pPg->pPager; /* The pager that owns pPg */ // Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); // /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow // ** a journal header to be written between the pages journaled by // ** this function. // */ // assert( !MEMDB ); // assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); // pPager->doNotSpill |= SPILLFLAG_NOSYNC; // /* This trick assumes that both the page-size and sector-size are // ** an integer power of 2. It sets variable pg1 to the identifier // ** of the first page of the sector pPg is located on. // */ // pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; // nPageCount = pPager->dbSize; // if( pPg->pgno>nPageCount ){ // nPage = (pPg->pgno - pg1)+1; // }else if( (pg1+nPagePerSector-1)>nPageCount ){ // nPage = nPageCount+1-pg1; // }else{ // nPage = nPagePerSector; // } // assert(nPage>0); // assert(pg1<=pPg->pgno); // assert((pg1+nPage)>pPg->pgno); // for(ii=0; iipgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ // if( pg!=PAGER_MJ_PGNO(pPager) ){ // rc = sqlite3PagerGet(pPager, pg, &pPage, 0); // if( rc==SQLITE_OK ){ // rc = pager_write(pPage); // if( pPage->flags&PGHDR_NEED_SYNC ){ // needSync = 1; // } // sqlite3PagerUnrefNotNull(pPage); // } // } // }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ // if( pPage->flags&PGHDR_NEED_SYNC ){ // needSync = 1; // } // sqlite3PagerUnrefNotNull(pPage); // } // } // /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages // ** starting at pg1, then it needs to be set for all of them. Because // ** writing to any of these nPage pages may damage the others, the // ** journal file must contain sync()ed copies of all of them // ** before any of them can be written out to the database file. // */ // if( rc==SQLITE_OK && needSync ){ // assert( !MEMDB ); // for(ii=0; iiflags |= PGHDR_NEED_SYNC; // sqlite3PagerUnrefNotNull(pPage); // } // } // } // assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); // pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; // return rc; // } // /* // ** Mark a data page as writeable. This routine must be called before // ** making changes to a page. The caller must check the return value // ** of this function and be careful not to change any page data unless // ** this routine returns SQLITE_OK. // ** // ** The difference between this function and pager_write() is that this // ** function also deals with the special case where 2 or more pages // ** fit on a single disk sector. In this case all co-resident pages // ** must have been written to the journal file before returning. // ** // ** If an error occurs, SQLITE_NOMEM or an IO error code is returned // ** as appropriate. Otherwise, SQLITE_OK. // */ // int sqlite3PagerWrite(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // assert( (pPg->flags & PGHDR_MMAP)==0 ); // assert( pPager->eState>=PAGER_WRITER_LOCKED ); // assert( assert_pager_state(pPager) ); // if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ // if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); // return SQLITE_OK; // }else if( pPager->errCode ){ // return pPager->errCode; // }else if( pPager->sectorSize > (u32)pPager->pageSize ){ // assert( pPager->tempFile==0 ); // return pagerWriteLargeSector(pPg); // }else{ // return pager_write(pPg); // } // } // /* // ** Return TRUE if the page given in the argument was previously passed // ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok // ** to change the content of the page. // */ // #ifndef NDEBUG // int sqlite3PagerIswriteable(DbPage *pPg){ // return pPg->flags & PGHDR_WRITEABLE; // } // #endif // /* // ** A call to this routine tells the pager that it is not necessary to // ** write the information on page pPg back to the disk, even though // ** that page might be marked as dirty. This happens, for example, when // ** the page has been added as a leaf of the freelist and so its // ** content no longer matters. // ** // ** The overlying software layer calls this routine when all of the data // ** on the given page is unused. The pager marks the page as clean so // ** that it does not get written to disk. // ** // ** Tests show that this optimization can quadruple the speed of large // ** DELETE operations. // ** // ** This optimization cannot be used with a temp-file, as the page may // ** have been dirty at the start of the transaction. In that case, if // ** memory pressure forces page pPg out of the cache, the data does need // ** to be written out to disk so that it may be read back in if the // ** current transaction is rolled back. // */ // void sqlite3PagerDontWrite(PgHdr *pPg){ // Pager *pPager = pPg->pPager; // if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ // PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); // IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) // pPg->flags |= PGHDR_DONT_WRITE; // pPg->flags &= ~PGHDR_WRITEABLE; // testcase( pPg->flags & PGHDR_NEED_SYNC ); // pager_set_pagehash(pPg); // } // } // /* // ** This routine is called to increment the value of the database file // ** change-counter, stored as a 4-byte big-endian integer starting at // ** byte offset 24 of the pager file. The secondary change counter at // ** 92 is also updated, as is the SQLite version number at offset 96. // ** // ** But this only happens if the pPager->changeCountDone flag is false. // ** To avoid excess churning of page 1, the update only happens once. // ** See also the pager_write_changecounter() routine that does an // ** unconditional update of the change counters. // ** // ** If the isDirectMode flag is zero, then this is done by calling // ** sqlite3PagerWrite() on page 1, then modifying the contents of the // ** page data. In this case the file will be updated when the current // ** transaction is committed. // ** // ** The isDirectMode flag may only be non-zero if the library was compiled // ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, // ** if isDirect is non-zero, then the database file is updated directly // ** by writing an updated version of page 1 using a call to the // ** sqlite3OsWrite() function. // */ // static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ // int rc = SQLITE_OK; // assert( pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // ); // assert( assert_pager_state(pPager) ); // /* Declare and initialize constant integer 'isDirect'. If the // ** atomic-write optimization is enabled in this build, then isDirect // ** is initialized to the value passed as the isDirectMode parameter // ** to this function. Otherwise, it is always set to zero. // ** // ** The idea is that if the atomic-write optimization is not // ** enabled at compile time, the compiler can omit the tests of // ** 'isDirect' below, as well as the block enclosed in the // ** "if( isDirect )" condition. // */ // #ifndef SQLITE_ENABLE_ATOMIC_WRITE // # define DIRECT_MODE 0 // assert( isDirectMode==0 ); // UNUSED_PARAMETER(isDirectMode); // #else // # define DIRECT_MODE isDirectMode // #endif // if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ // PgHdr *pPgHdr; /* Reference to page 1 */ // assert( !pPager->tempFile && isOpen(pPager->fd) ); // /* Open page 1 of the file for writing. */ // rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); // assert( pPgHdr==0 || rc==SQLITE_OK ); // /* If page one was fetched successfully, and this function is not // ** operating in direct-mode, make page 1 writable. When not in // ** direct mode, page 1 is always held in cache and hence the PagerGet() // ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. // */ // if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ // rc = sqlite3PagerWrite(pPgHdr); // } // if( rc==SQLITE_OK ){ // /* Actually do the update of the change counter */ // pager_write_changecounter(pPgHdr); // /* If running in direct mode, write the contents of page 1 to the file. */ // if( DIRECT_MODE ){ // const void *zBuf; // assert( pPager->dbFileSize>0 ); // zBuf = pPgHdr->pData; // if( rc==SQLITE_OK ){ // rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); // pPager->aStat[PAGER_STAT_WRITE]++; // } // if( rc==SQLITE_OK ){ // /* Update the pager's copy of the change-counter. Otherwise, the // ** next time a read transaction is opened the cache will be // ** flushed (as the change-counter values will not match). */ // const void *pCopy = (const void *)&((const char *)zBuf)[24]; // memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); // pPager->changeCountDone = 1; // } // }else{ // pPager->changeCountDone = 1; // } // } // /* Release the page reference. */ // sqlite3PagerUnref(pPgHdr); // } // return rc; // } // /* // ** Sync the database file to disk. This is a no-op for in-memory databases // ** or pages with the Pager.noSync flag set. // ** // ** If successful, or if called on a pager for which it is a no-op, this // ** function returns SQLITE_OK. Otherwise, an IO error code is returned. // */ // int sqlite3PagerSync(Pager *pPager, const char *zSuper){ // int rc = SQLITE_OK; // void *pArg = (void*)zSuper; // rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); // if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; // if( rc==SQLITE_OK && !pPager->noSync ){ // assert( !MEMDB ); // rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); // } // return rc; // } // /* // ** This function may only be called while a write-transaction is active in // ** rollback. If the connection is in WAL mode, this call is a no-op. // ** Otherwise, if the connection does not already have an EXCLUSIVE lock on // ** the database file, an attempt is made to obtain one. // ** // ** If the EXCLUSIVE lock is already held or the attempt to obtain it is // ** successful, or the connection is in WAL mode, SQLITE_OK is returned. // ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is // ** returned. // */ // int sqlite3PagerExclusiveLock(Pager *pPager){ // int rc = pPager->errCode; // assert( assert_pager_state(pPager) ); // if( rc==SQLITE_OK ){ // assert( pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // || pPager->eState==PAGER_WRITER_LOCKED // ); // assert( assert_pager_state(pPager) ); // if( 0==pagerUseWal(pPager) ){ // rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); // } // } // return rc; // } // /* // ** Sync the database file for the pager pPager. zSuper points to the name // ** of a super-journal file that should be written into the individual // ** journal file. zSuper may be NULL, which is interpreted as no // ** super-journal (a single database transaction). // ** // ** This routine ensures that: // ** // ** * The database file change-counter is updated, // ** * the journal is synced (unless the atomic-write optimization is used), // ** * all dirty pages are written to the database file, // ** * the database file is truncated (if required), and // ** * the database file synced. // ** // ** The only thing that remains to commit the transaction is to finalize // ** (delete, truncate or zero the first part of) the journal file (or // ** delete the super-journal file if specified). // ** // ** Note that if zSuper==NULL, this does not overwrite a previous value // ** passed to an sqlite3PagerCommitPhaseOne() call. // ** // ** If the final parameter - noSync - is true, then the database file itself // ** is not synced. The caller must call sqlite3PagerSync() directly to // ** sync the database file before calling CommitPhaseTwo() to delete the // ** journal file in this case. // */ // int sqlite3PagerCommitPhaseOne( // Pager *pPager, /* Pager object */ // const char *zSuper, /* If not NULL, the super-journal name */ // int noSync /* True to omit the xSync on the db file */ // ){ // int rc = SQLITE_OK; /* Return code */ // assert( pPager->eState==PAGER_WRITER_LOCKED // || pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // || pPager->eState==PAGER_ERROR // ); // assert( assert_pager_state(pPager) ); // /* If a prior error occurred, report that error again. */ // if( NEVER(pPager->errCode) ) return pPager->errCode; // /* Provide the ability to easily simulate an I/O error during testing */ // if( sqlite3FaultSim(400) ) return SQLITE_IOERR; // PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n", // pPager->zFilename, zSuper, pPager->dbSize)); // /* If no database changes have been made, return early. */ // if( pPager->eStatetempFile ); // assert( isOpen(pPager->fd) || pPager->tempFile ); // if( 0==pagerFlushOnCommit(pPager, 1) ){ // /* If this is an in-memory db, or no pages have been written to, or this // ** function has already been called, it is mostly a no-op. However, any // ** backup in progress needs to be restarted. */ // sqlite3BackupRestart(pPager->pBackup); // }else{ // PgHdr *pList; // if( pagerUseWal(pPager) ){ // PgHdr *pPageOne = 0; // pList = sqlite3PcacheDirtyList(pPager->pPCache); // if( pList==0 ){ // /* Must have at least one page for the WAL commit flag. // ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ // rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); // pList = pPageOne; // pList->pDirty = 0; // } // assert( rc==SQLITE_OK ); // if( ALWAYS(pList) ){ // rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); // } // sqlite3PagerUnref(pPageOne); // if( rc==SQLITE_OK ){ // sqlite3PcacheCleanAll(pPager->pPCache); // } // }else{ // /* The bBatch boolean is true if the batch-atomic-write commit method // ** should be used. No rollback journal is created if batch-atomic-write // ** is enabled. // */ // #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE // sqlite3_file *fd = pPager->fd; // int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ // && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) // && !pPager->noSync // && sqlite3JournalIsInMemory(pPager->jfd); // #else // # define bBatch 0 // #endif // #ifdef SQLITE_ENABLE_ATOMIC_WRITE // /* The following block updates the change-counter. Exactly how it // ** does this depends on whether or not the atomic-update optimization // ** was enabled at compile time, and if this transaction meets the // ** runtime criteria to use the operation: // ** // ** * The file-system supports the atomic-write property for // ** blocks of size page-size, and // ** * This commit is not part of a multi-file transaction, and // ** * Exactly one page has been modified and store in the journal file. // ** // ** If the optimization was not enabled at compile time, then the // ** pager_incr_changecounter() function is called to update the change // ** counter in 'indirect-mode'. If the optimization is compiled in but // ** is not applicable to this transaction, call sqlite3JournalCreate() // ** to make sure the journal file has actually been created, then call // ** pager_incr_changecounter() to update the change-counter in indirect // ** mode. // ** // ** Otherwise, if the optimization is both enabled and applicable, // ** then call pager_incr_changecounter() to update the change-counter // ** in 'direct' mode. In this case the journal file will never be // ** created for this transaction. // */ // if( bBatch==0 ){ // PgHdr *pPg; // assert( isOpen(pPager->jfd) // || pPager->journalMode==PAGER_JOURNALMODE_OFF // || pPager->journalMode==PAGER_JOURNALMODE_WAL // ); // if( !zSuper && isOpen(pPager->jfd) // && pPager->journalOff==jrnlBufferSize(pPager) // && pPager->dbSize>=pPager->dbOrigSize // && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) // ){ // /* Update the db file change counter via the direct-write method. The // ** following call will modify the in-memory representation of page 1 // ** to include the updated change counter and then write page 1 // ** directly to the database file. Because of the atomic-write // ** property of the host file-system, this is safe. // */ // rc = pager_incr_changecounter(pPager, 1); // }else{ // rc = sqlite3JournalCreate(pPager->jfd); // if( rc==SQLITE_OK ){ // rc = pager_incr_changecounter(pPager, 0); // } // } // } // #else /* SQLITE_ENABLE_ATOMIC_WRITE */ // #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE // if( zSuper ){ // rc = sqlite3JournalCreate(pPager->jfd); // if( rc!=SQLITE_OK ) goto commit_phase_one_exit; // assert( bBatch==0 ); // } // #endif // rc = pager_incr_changecounter(pPager, 0); // #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ // if( rc!=SQLITE_OK ) goto commit_phase_one_exit; // /* Write the super-journal name into the journal file. If a // ** super-journal file name has already been written to the journal file, // ** or if zSuper is NULL (no super-journal), then this call is a no-op. // */ // rc = writeSuperJournal(pPager, zSuper); // if( rc!=SQLITE_OK ) goto commit_phase_one_exit; // /* Sync the journal file and write all dirty pages to the database. // ** If the atomic-update optimization is being used, this sync will not // ** create the journal file or perform any real IO. // ** // ** Because the change-counter page was just modified, unless the // ** atomic-update optimization is used it is almost certain that the // ** journal requires a sync here. However, in locking_mode=exclusive // ** on a system under memory pressure it is just possible that this is // ** not the case. In this case it is likely enough that the redundant // ** xSync() call will be changed to a no-op by the OS anyhow. // */ // rc = syncJournal(pPager, 0); // if( rc!=SQLITE_OK ) goto commit_phase_one_exit; // pList = sqlite3PcacheDirtyList(pPager->pPCache); // #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE // if( bBatch ){ // rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); // if( rc==SQLITE_OK ){ // rc = pager_write_pagelist(pPager, pList); // if( rc==SQLITE_OK ){ // rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); // } // if( rc!=SQLITE_OK ){ // sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); // } // } // if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ // rc = sqlite3JournalCreate(pPager->jfd); // if( rc!=SQLITE_OK ){ // sqlite3OsClose(pPager->jfd); // goto commit_phase_one_exit; // } // bBatch = 0; // }else{ // sqlite3OsClose(pPager->jfd); // } // } // #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ // if( bBatch==0 ){ // rc = pager_write_pagelist(pPager, pList); // } // if( rc!=SQLITE_OK ){ // assert( rc!=SQLITE_IOERR_BLOCKED ); // goto commit_phase_one_exit; // } // sqlite3PcacheCleanAll(pPager->pPCache); // /* If the file on disk is smaller than the database image, use // ** pager_truncate to grow the file here. This can happen if the database // ** image was extended as part of the current transaction and then the // ** last page in the db image moved to the free-list. In this case the // ** last page is never written out to disk, leaving the database file // ** undersized. Fix this now if it is the case. */ // if( pPager->dbSize>pPager->dbFileSize ){ // Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); // assert( pPager->eState==PAGER_WRITER_DBMOD ); // rc = pager_truncate(pPager, nNew); // if( rc!=SQLITE_OK ) goto commit_phase_one_exit; // } // /* Finally, sync the database file. */ // if( !noSync ){ // rc = sqlite3PagerSync(pPager, zSuper); // } // IOTRACE(("DBSYNC %p\n", pPager)) // } // } // commit_phase_one_exit: // if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ // pPager->eState = PAGER_WRITER_FINISHED; // } // return rc; // } // /* // ** When this function is called, the database file has been completely // ** updated to reflect the changes made by the current transaction and // ** synced to disk. The journal file still exists in the file-system // ** though, and if a failure occurs at this point it will eventually // ** be used as a hot-journal and the current transaction rolled back. // ** // ** This function finalizes the journal file, either by deleting, // ** truncating or partially zeroing it, so that it cannot be used // ** for hot-journal rollback. Once this is done the transaction is // ** irrevocably committed. // ** // ** If an error occurs, an IO error code is returned and the pager // ** moves into the error state. Otherwise, SQLITE_OK is returned. // */ // int sqlite3PagerCommitPhaseTwo(Pager *pPager){ // int rc = SQLITE_OK; /* Return code */ // /* This routine should not be called if a prior error has occurred. // ** But if (due to a coding error elsewhere in the system) it does get // ** called, just return the same error code without doing anything. */ // if( NEVER(pPager->errCode) ) return pPager->errCode; // pPager->iDataVersion++; // assert( pPager->eState==PAGER_WRITER_LOCKED // || pPager->eState==PAGER_WRITER_FINISHED // || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) // ); // assert( assert_pager_state(pPager) ); // /* An optimization. If the database was not actually modified during // ** this transaction, the pager is running in exclusive-mode and is // ** using persistent journals, then this function is a no-op. // ** // ** The start of the journal file currently contains a single journal // ** header with the nRec field set to 0. If such a journal is used as // ** a hot-journal during hot-journal rollback, 0 changes will be made // ** to the database file. So there is no need to zero the journal // ** header. Since the pager is in exclusive mode, there is no need // ** to drop any locks either. // */ // if( pPager->eState==PAGER_WRITER_LOCKED // && pPager->exclusiveMode // && pPager->journalMode==PAGER_JOURNALMODE_PERSIST // ){ // assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); // pPager->eState = PAGER_READER; // return SQLITE_OK; // } // PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); // rc = pager_end_transaction(pPager, pPager->setSuper, 1); // return pager_error(pPager, rc); // } // /* // ** If a write transaction is open, then all changes made within the // ** transaction are reverted and the current write-transaction is closed. // ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR // ** state if an error occurs. // ** // ** If the pager is already in PAGER_ERROR state when this function is called, // ** it returns Pager.errCode immediately. No work is performed in this case. // ** // ** Otherwise, in rollback mode, this function performs two functions: // ** // ** 1) It rolls back the journal file, restoring all database file and // ** in-memory cache pages to the state they were in when the transaction // ** was opened, and // ** // ** 2) It finalizes the journal file, so that it is not used for hot // ** rollback at any point in the future. // ** // ** Finalization of the journal file (task 2) is only performed if the // ** rollback is successful. // ** // ** In WAL mode, all cache-entries containing data modified within the // ** current transaction are either expelled from the cache or reverted to // ** their pre-transaction state by re-reading data from the database or // ** WAL files. The WAL transaction is then closed. // */ // int sqlite3PagerRollback(Pager *pPager){ // int rc = SQLITE_OK; /* Return code */ // PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); // /* PagerRollback() is a no-op if called in READER or OPEN state. If // ** the pager is already in the ERROR state, the rollback is not // ** attempted here. Instead, the error code is returned to the caller. // */ // assert( assert_pager_state(pPager) ); // if( pPager->eState==PAGER_ERROR ) return pPager->errCode; // if( pPager->eState<=PAGER_READER ) return SQLITE_OK; // if( pagerUseWal(pPager) ){ // int rc2; // rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); // rc2 = pager_end_transaction(pPager, pPager->setSuper, 0); // if( rc==SQLITE_OK ) rc = rc2; // }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ // int eState = pPager->eState; // rc = pager_end_transaction(pPager, 0, 0); // if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ // /* This can happen using journal_mode=off. Move the pager to the error // ** state to indicate that the contents of the cache may not be trusted. // ** Any active readers will get SQLITE_ABORT. // */ // pPager->errCode = SQLITE_ABORT; // pPager->eState = PAGER_ERROR; // setGetterMethod(pPager); // return rc; // } // }else{ // rc = pager_playback(pPager, 0); // } // assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); // assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT // || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR // || rc==SQLITE_CANTOPEN // ); // /* If an error occurs during a ROLLBACK, we can no longer trust the pager // ** cache. So call pager_error() on the way out to make any error persistent. // */ // return pager_error(pPager, rc); // } // /* // ** Return TRUE if the database file is opened read-only. Return FALSE // ** if the database is (in theory) writable. // */ // u8 sqlite3PagerIsreadonly(Pager *pPager){ // return pPager->readOnly; // } // #ifdef SQLITE_DEBUG // /* // ** Return the sum of the reference counts for all pages held by pPager. // */ // int sqlite3PagerRefcount(Pager *pPager){ // return sqlite3PcacheRefCount(pPager->pPCache); // } // #endif // /* // ** Return the approximate number of bytes of memory currently // ** used by the pager and its associated cache. // */ // int sqlite3PagerMemUsed(Pager *pPager){ // int perPageSize = pPager->pageSize + pPager->nExtra // + (int)(sizeof(PgHdr) + 5*sizeof(void*)); // return perPageSize*sqlite3PcachePagecount(pPager->pPCache) // + sqlite3MallocSize(pPager) // + pPager->pageSize; // } // /* // ** Return the number of references to the specified page. // */ // int sqlite3PagerPageRefcount(DbPage *pPage){ // return sqlite3PcachePageRefcount(pPage); // } // #ifdef SQLITE_TEST // /* // ** This routine is used for testing and analysis only. // */ // int *sqlite3PagerStats(Pager *pPager){ // static int a[11]; // a[0] = sqlite3PcacheRefCount(pPager->pPCache); // a[1] = sqlite3PcachePagecount(pPager->pPCache); // a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); // a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; // a[4] = pPager->eState; // a[5] = pPager->errCode; // a[6] = pPager->aStat[PAGER_STAT_HIT]; // a[7] = pPager->aStat[PAGER_STAT_MISS]; // a[8] = 0; /* Used to be pPager->nOvfl */ // a[9] = pPager->nRead; // a[10] = pPager->aStat[PAGER_STAT_WRITE]; // return a; // } // #endif // /* // ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, // ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation // ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because // ** it was added later. // ** // ** Before returning, *pnVal is incremented by the // ** current cache hit or miss count, according to the value of eStat. If the // ** reset parameter is non-zero, the cache hit or miss count is zeroed before // ** returning. // */ // void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ // assert( eStat==SQLITE_DBSTATUS_CACHE_HIT // || eStat==SQLITE_DBSTATUS_CACHE_MISS // || eStat==SQLITE_DBSTATUS_CACHE_WRITE // || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 // ); // assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); // assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); // assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 // && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); // eStat -= SQLITE_DBSTATUS_CACHE_HIT; // *pnVal += pPager->aStat[eStat]; // if( reset ){ // pPager->aStat[eStat] = 0; // } // } // /* // ** Return true if this is an in-memory or temp-file backed pager. // */ // int sqlite3PagerIsMemdb(Pager *pPager){ // return pPager->tempFile || pPager->memVfs; // } // /* // ** Check that there are at least nSavepoint savepoints open. If there are // ** currently less than nSavepoints open, then open one or more savepoints // ** to make up the difference. If the number of savepoints is already // ** equal to nSavepoint, then this function is a no-op. // ** // ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error // ** occurs while opening the sub-journal file, then an IO error code is // ** returned. Otherwise, SQLITE_OK. // */ // static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ // int rc = SQLITE_OK; /* Return code */ // int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ // int ii; /* Iterator variable */ // PagerSavepoint *aNew; /* New Pager.aSavepoint array */ // assert( pPager->eState>=PAGER_WRITER_LOCKED ); // assert( assert_pager_state(pPager) ); // assert( nSavepoint>nCurrent && pPager->useJournal ); // /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM // ** if the allocation fails. Otherwise, zero the new portion in case a // ** malloc failure occurs while populating it in the for(...) loop below. // */ // aNew = (PagerSavepoint *)sqlite3Realloc( // pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint // ); // if( !aNew ){ // return SQLITE_NOMEM; // } // memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); // pPager->aSavepoint = aNew; // /* Populate the PagerSavepoint structures just allocated. */ // for(ii=nCurrent; iidbSize; // if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ // aNew[ii].iOffset = pPager->journalOff; // }else{ // aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); // } // aNew[ii].iSubRec = pPager->nSubRec; // aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); // aNew[ii].bTruncateOnRelease = 1; // if( !aNew[ii].pInSavepoint ){ // return SQLITE_NOMEM; // } // if( pagerUseWal(pPager) ){ // sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); // } // pPager->nSavepoint = ii+1; // } // assert( pPager->nSavepoint==nSavepoint ); // assertTruncateConstraint(pPager); // return rc; // } // int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ // assert( pPager->eState>=PAGER_WRITER_LOCKED ); // assert( assert_pager_state(pPager) ); // if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ // return pagerOpenSavepoint(pPager, nSavepoint); // }else{ // return SQLITE_OK; // } // } // /* // ** This function is called to rollback or release (commit) a savepoint. // ** The savepoint to release or rollback need not be the most recently // ** created savepoint. // ** // ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. // ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with // ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes // ** that have occurred since the specified savepoint was created. // ** // ** The savepoint to rollback or release is identified by parameter // ** iSavepoint. A value of 0 means to operate on the outermost savepoint // ** (the first created). A value of (Pager.nSavepoint-1) means operate // ** on the most recently created savepoint. If iSavepoint is greater than // ** (Pager.nSavepoint-1), then this function is a no-op. // ** // ** If a negative value is passed to this function, then the current // ** transaction is rolled back. This is different to calling // ** sqlite3PagerRollback() because this function does not terminate // ** the transaction or unlock the database, it just restores the // ** contents of the database to its original state. // ** // ** In any case, all savepoints with an index greater than iSavepoint // ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), // ** then savepoint iSavepoint is also destroyed. // ** // ** This function may return SQLITE_NOMEM if a memory allocation fails, // ** or an IO error code if an IO error occurs while rolling back a // ** savepoint. If no errors occur, SQLITE_OK is returned. // */ // int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ // int rc = pPager->errCode; // #ifdef SQLITE_ENABLE_ZIPVFS // if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; // #endif // assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); // assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); // if( rc==SQLITE_OK && iSavepointnSavepoint ){ // int ii; /* Iterator variable */ // int nNew; /* Number of remaining savepoints after this op. */ // /* Figure out how many savepoints will still be active after this // ** operation. Store this value in nNew. Then free resources associated // ** with any savepoints that are destroyed by this operation. // */ // nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); // for(ii=nNew; iinSavepoint; ii++){ // sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); // } // pPager->nSavepoint = nNew; // /* Truncate the sub-journal so that it only includes the parts // ** that are still in use. */ // if( op==SAVEPOINT_RELEASE ){ // PagerSavepoint *pRel = &pPager->aSavepoint[nNew]; // if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){ // /* Only truncate if it is an in-memory sub-journal. */ // if( sqlite3JournalIsInMemory(pPager->sjfd) ){ // i64 sz = (pPager->pageSize+4)*(i64)pRel->iSubRec; // rc = sqlite3OsTruncate(pPager->sjfd, sz); // assert( rc==SQLITE_OK ); // } // pPager->nSubRec = pRel->iSubRec; // } // } // /* Else this is a rollback operation, playback the specified savepoint. // ** If this is a temp-file, it is possible that the journal file has // ** not yet been opened. In this case there have been no changes to // ** the database file, so the playback operation can be skipped. // */ // else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ // PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; // rc = pagerPlaybackSavepoint(pPager, pSavepoint); // assert(rc!=SQLITE_DONE); // } // #ifdef SQLITE_ENABLE_ZIPVFS // /* If the cache has been modified but the savepoint cannot be rolled // ** back journal_mode=off, put the pager in the error state. This way, // ** if the VFS used by this pager includes ZipVFS, the entire transaction // ** can be rolled back at the ZipVFS level. */ // else if( // pPager->journalMode==PAGER_JOURNALMODE_OFF // && pPager->eState>=PAGER_WRITER_CACHEMOD // ){ // pPager->errCode = SQLITE_ABORT; // pPager->eState = PAGER_ERROR; // setGetterMethod(pPager); // } // #endif // } // return rc; // } // /* // ** Return the full pathname of the database file. // ** // ** Except, if the pager is in-memory only, then return an empty string if // ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when // ** used to report the filename to the user, for compatibility with legacy // ** behavior. But when the Btree needs to know the filename for matching to // ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can // ** participate in shared-cache. // ** // ** The return value to this routine is always safe to use with // ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. // */ // const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ // static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; // return (nullIfMemDb && pPager->memDb) ? &zFake[4] : pPager->zFilename; // } // /* // ** Return the VFS structure for the pager. // */ // sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ // return pPager->pVfs; // } // /* // ** Return the file handle for the database file associated // ** with the pager. This might return NULL if the file has // ** not yet been opened. // */ // sqlite3_file *sqlite3PagerFile(Pager *pPager){ // return pPager->fd; // } // /* // ** Return the file handle for the journal file (if it exists). // ** This will be either the rollback journal or the WAL file. // */ // sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ // #if SQLITE_OMIT_WAL // return pPager->jfd; // #else // return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; // #endif // } // /* // ** Return the full pathname of the journal file. // */ // const char *sqlite3PagerJournalname(Pager *pPager){ // return pPager->zJournal; // } // #ifndef SQLITE_OMIT_AUTOVACUUM // /* // ** Move the page pPg to location pgno in the file. // ** // ** There must be no references to the page previously located at // ** pgno (which we call pPgOld) though that page is allowed to be // ** in cache. If the page previously located at pgno is not already // ** in the rollback journal, it is not put there by by this routine. // ** // ** References to the page pPg remain valid. Updating any // ** meta-data associated with pPg (i.e. data stored in the nExtra bytes // ** allocated along with the page) is the responsibility of the caller. // ** // ** A transaction must be active when this routine is called. It used to be // ** required that a statement transaction was not active, but this restriction // ** has been removed (CREATE INDEX needs to move a page when a statement // ** transaction is active). // ** // ** If the fourth argument, isCommit, is non-zero, then this page is being // ** moved as part of a database reorganization just before the transaction // ** is being committed. In this case, it is guaranteed that the database page // ** pPg refers to will not be written to again within this transaction. // ** // ** This function may return SQLITE_NOMEM or an IO error code if an error // ** occurs. Otherwise, it returns SQLITE_OK. // */ // int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ // PgHdr *pPgOld; /* The page being overwritten. */ // Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ // int rc; /* Return code */ // Pgno origPgno; /* The original page number */ // assert( pPg->nRef>0 ); // assert( pPager->eState==PAGER_WRITER_CACHEMOD // || pPager->eState==PAGER_WRITER_DBMOD // ); // assert( assert_pager_state(pPager) ); // /* In order to be able to rollback, an in-memory database must journal // ** the page we are moving from. // */ // assert( pPager->tempFile || !MEMDB ); // if( pPager->tempFile ){ // rc = sqlite3PagerWrite(pPg); // if( rc ) return rc; // } // /* If the page being moved is dirty and has not been saved by the latest // ** savepoint, then save the current contents of the page into the // ** sub-journal now. This is required to handle the following scenario: // ** // ** BEGIN; // ** // ** SAVEPOINT one; // ** // ** ROLLBACK TO one; // ** // ** If page X were not written to the sub-journal here, it would not // ** be possible to restore its contents when the "ROLLBACK TO one" // ** statement were is processed. // ** // ** subjournalPage() may need to allocate space to store pPg->pgno into // ** one or more savepoint bitvecs. This is the reason this function // ** may return SQLITE_NOMEM. // */ // if( (pPg->flags & PGHDR_DIRTY)!=0 // && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) // ){ // return rc; // } // PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", // PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); // IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) // /* If the journal needs to be sync()ed before page pPg->pgno can // ** be written to, store pPg->pgno in local variable needSyncPgno. // ** // ** If the isCommit flag is set, there is no need to remember that // ** the journal needs to be sync()ed before database page pPg->pgno // ** can be written to. The caller has already promised not to write to it. // */ // if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ // needSyncPgno = pPg->pgno; // assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || // pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); // assert( pPg->flags&PGHDR_DIRTY ); // } // /* If the cache contains a page with page-number pgno, remove it // ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for // ** page pgno before the 'move' operation, it needs to be retained // ** for the page moved there. // */ // pPg->flags &= ~PGHDR_NEED_SYNC; // pPgOld = sqlite3PagerLookup(pPager, pgno); // assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); // if( pPgOld ){ // if( NEVER(pPgOld->nRef>1) ){ // sqlite3PagerUnrefNotNull(pPgOld); // return SQLITE_CORRUPT_BKPT; // } // pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); // if( pPager->tempFile ){ // /* Do not discard pages from an in-memory database since we might // ** need to rollback later. Just move the page out of the way. */ // sqlite3PcacheMove(pPgOld, pPager->dbSize+1); // }else{ // sqlite3PcacheDrop(pPgOld); // } // } // origPgno = pPg->pgno; // sqlite3PcacheMove(pPg, pgno); // sqlite3PcacheMakeDirty(pPg); // /* For an in-memory database, make sure the original page continues // ** to exist, in case the transaction needs to roll back. Use pPgOld // ** as the original page since it has already been allocated. // */ // if( pPager->tempFile && pPgOld ){ // sqlite3PcacheMove(pPgOld, origPgno); // sqlite3PagerUnrefNotNull(pPgOld); // } // if( needSyncPgno ){ // /* If needSyncPgno is non-zero, then the journal file needs to be // ** sync()ed before any data is written to database file page needSyncPgno. // ** Currently, no such page exists in the page-cache and the // ** "is journaled" bitvec flag has been set. This needs to be remedied by // ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC // ** flag. // ** // ** If the attempt to load the page into the page-cache fails, (due // ** to a malloc() or IO failure), clear the bit in the pInJournal[] // ** array. Otherwise, if the page is loaded and written again in // ** this transaction, it may be written to the database file before // ** it is synced into the journal file. This way, it may end up in // ** the journal file twice, but that is not a problem. // */ // PgHdr *pPgHdr; // rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); // if( rc!=SQLITE_OK ){ // if( needSyncPgno<=pPager->dbOrigSize ){ // assert( pPager->pTmpSpace!=0 ); // sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); // } // return rc; // } // pPgHdr->flags |= PGHDR_NEED_SYNC; // sqlite3PcacheMakeDirty(pPgHdr); // sqlite3PagerUnrefNotNull(pPgHdr); // } // return SQLITE_OK; // } // #endif // /* // ** The page handle passed as the first argument refers to a dirty page // ** with a page number other than iNew. This function changes the page's // ** page number to iNew and sets the value of the PgHdr.flags field to // ** the value passed as the third parameter. // */ // void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ // assert( pPg->pgno!=iNew ); // pPg->flags = flags; // sqlite3PcacheMove(pPg, iNew); // } // /* // ** Return a pointer to the data for the specified page. // */ // void *sqlite3PagerGetData(DbPage *pPg){ // assert( pPg->nRef>0 || pPg->pPager->memDb ); // return pPg->pData; // } // /* // ** Return a pointer to the Pager.nExtra bytes of "extra" space // ** allocated along with the specified page. // */ // void *sqlite3PagerGetExtra(DbPage *pPg){ // return pPg->pExtra; // } // /* // ** Get/set the locking-mode for this pager. Parameter eMode must be one // ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or // ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then // ** the locking-mode is set to the value specified. // ** // ** The returned value is either PAGER_LOCKINGMODE_NORMAL or // ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) // ** locking-mode. // */ // int sqlite3PagerLockingMode(Pager *pPager, int eMode){ // assert( eMode==PAGER_LOCKINGMODE_QUERY // || eMode==PAGER_LOCKINGMODE_NORMAL // || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); // assert( PAGER_LOCKINGMODE_QUERY<0 ); // assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); // assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); // if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ // pPager->exclusiveMode = (u8)eMode; // } // return (int)pPager->exclusiveMode; // } // /* // ** Set the journal-mode for this pager. Parameter eMode must be one of: // ** // ** PAGER_JOURNALMODE_DELETE // ** PAGER_JOURNALMODE_TRUNCATE // ** PAGER_JOURNALMODE_PERSIST // ** PAGER_JOURNALMODE_OFF // ** PAGER_JOURNALMODE_MEMORY // ** PAGER_JOURNALMODE_WAL // ** // ** The journalmode is set to the value specified if the change is allowed. // ** The change may be disallowed for the following reasons: // ** // ** * An in-memory database can only have its journal_mode set to _OFF // ** or _MEMORY. // ** // ** * Temporary databases cannot have _WAL journalmode. // ** // ** The returned indicate the current (possibly updated) journal-mode. // */ // int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ // u8 eOld = pPager->journalMode; /* Prior journalmode */ // /* The eMode parameter is always valid */ // assert( eMode==PAGER_JOURNALMODE_DELETE // || eMode==PAGER_JOURNALMODE_TRUNCATE // || eMode==PAGER_JOURNALMODE_PERSIST // || eMode==PAGER_JOURNALMODE_OFF // || eMode==PAGER_JOURNALMODE_WAL // || eMode==PAGER_JOURNALMODE_MEMORY ); // /* This routine is only called from the OP_JournalMode opcode, and // ** the logic there will never allow a temporary file to be changed // ** to WAL mode. // */ // assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); // /* Do allow the journalmode of an in-memory database to be set to // ** anything other than MEMORY or OFF // */ // if( MEMDB ){ // assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); // if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ // eMode = eOld; // } // } // if( eMode!=eOld ){ // /* Change the journal mode. */ // assert( pPager->eState!=PAGER_ERROR ); // pPager->journalMode = (u8)eMode; // /* When transistioning from TRUNCATE or PERSIST to any other journal // ** mode except WAL, unless the pager is in locking_mode=exclusive mode, // ** delete the journal file. // */ // assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); // assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); // assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); // assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); // assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); // assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); // assert( isOpen(pPager->fd) || pPager->exclusiveMode ); // if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ // /* In this case we would like to delete the journal file. If it is // ** not possible, then that is not a problem. Deleting the journal file // ** here is an optimization only. // ** // ** Before deleting the journal file, obtain a RESERVED lock on the // ** database file. This ensures that the journal file is not deleted // ** while it is in use by some other client. // */ // sqlite3OsClose(pPager->jfd); // if( pPager->eLock>=RESERVED_LOCK ){ // sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); // }else{ // int rc = SQLITE_OK; // int state = pPager->eState; // assert( state==PAGER_OPEN || state==PAGER_READER ); // if( state==PAGER_OPEN ){ // rc = sqlite3PagerSharedLock(pPager); // } // if( pPager->eState==PAGER_READER ){ // assert( rc==SQLITE_OK ); // rc = pagerLockDb(pPager, RESERVED_LOCK); // } // if( rc==SQLITE_OK ){ // sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); // } // if( rc==SQLITE_OK && state==PAGER_READER ){ // pagerUnlockDb(pPager, SHARED_LOCK); // }else if( state==PAGER_OPEN ){ // pager_unlock(pPager); // } // assert( state==pPager->eState ); // } // }else if( eMode==PAGER_JOURNALMODE_OFF ){ // sqlite3OsClose(pPager->jfd); // } // } // /* Return the new journal mode */ // return (int)pPager->journalMode; // } // /* // ** Return the current journal mode. // */ // int sqlite3PagerGetJournalMode(Pager *pPager){ // return (int)pPager->journalMode; // } // /* // ** Return TRUE if the pager is in a state where it is OK to change the // ** journalmode. Journalmode changes can only happen when the database // ** is unmodified. // */ // int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ // assert( assert_pager_state(pPager) ); // if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; // if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; // return 1; // } // /* // ** Get/set the size-limit used for persistent journal files. // ** // ** Setting the size limit to -1 means no limit is enforced. // ** An attempt to set a limit smaller than -1 is a no-op. // */ // i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ // if( iLimit>=-1 ){ // pPager->journalSizeLimit = iLimit; // sqlite3WalLimit(pPager->pWal, iLimit); // } // return pPager->journalSizeLimit; // } // /* // ** Return a pointer to the pPager->pBackup variable. The backup module // ** in backup.c maintains the content of this variable. This module // ** uses it opaquely as an argument to sqlite3BackupRestart() and // ** sqlite3BackupUpdate() only. // */ // sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ // return &pPager->pBackup; // } // #ifndef SQLITE_OMIT_VACUUM // /* // ** Unless this is an in-memory or temporary database, clear the pager cache. // */ // void sqlite3PagerClearCache(Pager *pPager){ // assert( MEMDB==0 || pPager->tempFile ); // if( pPager->tempFile==0 ) pager_reset(pPager); // } // #endif // #ifndef SQLITE_OMIT_WAL // /* // ** This function is called when the user invokes "PRAGMA wal_checkpoint", // ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() // ** or wal_blocking_checkpoint() API functions. // ** // ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. // */ // int sqlite3PagerCheckpoint( // Pager *pPager, /* Checkpoint on this pager */ // sqlite3 *db, /* Db handle used to check for interrupts */ // int eMode, /* Type of checkpoint */ // int *pnLog, /* OUT: Final number of frames in log */ // int *pnCkpt /* OUT: Final number of checkpointed frames */ // ){ // int rc = SQLITE_OK; // if( pPager->pWal ){ // rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, // (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), // pPager->pBusyHandlerArg, // pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, // pnLog, pnCkpt // ); // } // return rc; // } // int sqlite3PagerWalCallback(Pager *pPager){ // return sqlite3WalCallback(pPager->pWal); // } // /* // ** Return true if the underlying VFS for the given pager supports the // ** primitives necessary for write-ahead logging. // */ // int sqlite3PagerWalSupported(Pager *pPager){ // const sqlite3_io_methods *pMethods = pPager->fd->pMethods; // if( pPager->noLock ) return 0; // return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); // } // /* // ** Attempt to take an exclusive lock on the database file. If a PENDING lock // ** is obtained instead, immediately release it. // */ // static int pagerExclusiveLock(Pager *pPager){ // int rc; /* Return code */ // assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); // rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); // if( rc!=SQLITE_OK ){ // /* If the attempt to grab the exclusive lock failed, release the // ** pending lock that may have been obtained instead. */ // pagerUnlockDb(pPager, SHARED_LOCK); // } // return rc; // } // /* // ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in // ** exclusive-locking mode when this function is called, take an EXCLUSIVE // ** lock on the database file and use heap-memory to store the wal-index // ** in. Otherwise, use the normal shared-memory. // */ // static int pagerOpenWal(Pager *pPager){ // int rc = SQLITE_OK; // assert( pPager->pWal==0 && pPager->tempFile==0 ); // assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); // /* If the pager is already in exclusive-mode, the WAL module will use // ** heap-memory for the wal-index instead of the VFS shared-memory // ** implementation. Take the exclusive lock now, before opening the WAL // ** file, to make sure this is safe. // */ // if( pPager->exclusiveMode ){ // rc = pagerExclusiveLock(pPager); // } // /* Open the connection to the log file. If this operation fails, // ** (e.g. due to malloc() failure), return an error code. // */ // if( rc==SQLITE_OK ){ // rc = sqlite3WalOpen(pPager->pVfs, // pPager->fd, pPager->zWal, pPager->exclusiveMode, // pPager->journalSizeLimit, &pPager->pWal // ); // } // pagerFixMaplimit(pPager); // return rc; // } // /* // ** The caller must be holding a SHARED lock on the database file to call // ** this function. // ** // ** If the pager passed as the first argument is open on a real database // ** file (not a temp file or an in-memory database), and the WAL file // ** is not already open, make an attempt to open it now. If successful, // ** return SQLITE_OK. If an error occurs or the VFS used by the pager does // ** not support the xShmXXX() methods, return an error code. *pbOpen is // ** not modified in either case. // ** // ** If the pager is open on a temp-file (or in-memory database), or if // ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK // ** without doing anything. // */ // int sqlite3PagerOpenWal( // Pager *pPager, /* Pager object */ // int *pbOpen /* OUT: Set to true if call is a no-op */ // ){ // int rc = SQLITE_OK; /* Return code */ // assert( assert_pager_state(pPager) ); // assert( pPager->eState==PAGER_OPEN || pbOpen ); // assert( pPager->eState==PAGER_READER || !pbOpen ); // assert( pbOpen==0 || *pbOpen==0 ); // assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); // if( !pPager->tempFile && !pPager->pWal ){ // if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; // /* Close any rollback journal previously open */ // sqlite3OsClose(pPager->jfd); // rc = pagerOpenWal(pPager); // if( rc==SQLITE_OK ){ // pPager->journalMode = PAGER_JOURNALMODE_WAL; // pPager->eState = PAGER_OPEN; // } // }else{ // *pbOpen = 1; // } // return rc; // } // /* // ** This function is called to close the connection to the log file prior // ** to switching from WAL to rollback mode. // ** // ** Before closing the log file, this function attempts to take an // ** EXCLUSIVE lock on the database file. If this cannot be obtained, an // ** error (SQLITE_BUSY) is returned and the log connection is not closed. // ** If successful, the EXCLUSIVE lock is not released before returning. // */ // int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ // int rc = SQLITE_OK; // assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); // /* If the log file is not already open, but does exist in the file-system, // ** it may need to be checkpointed before the connection can switch to // ** rollback mode. Open it now so this can happen. // */ // if( !pPager->pWal ){ // int logexists = 0; // rc = pagerLockDb(pPager, SHARED_LOCK); // if( rc==SQLITE_OK ){ // rc = sqlite3OsAccess( // pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists // ); // } // if( rc==SQLITE_OK && logexists ){ // rc = pagerOpenWal(pPager); // } // } // /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on // ** the database file, the log and log-summary files will be deleted. // */ // if( rc==SQLITE_OK && pPager->pWal ){ // rc = pagerExclusiveLock(pPager); // if( rc==SQLITE_OK ){ // rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, // pPager->pageSize, (u8*)pPager->pTmpSpace); // pPager->pWal = 0; // pagerFixMaplimit(pPager); // if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); // } // } // return rc; // } // #ifdef SQLITE_ENABLE_SETLK_TIMEOUT // /* // ** If pager pPager is a wal-mode database not in exclusive locking mode, // ** invoke the sqlite3WalWriteLock() function on the associated Wal object // ** with the same db and bLock parameters as were passed to this function. // ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. // */ // int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ // int rc = SQLITE_OK; // if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ // rc = sqlite3WalWriteLock(pPager->pWal, bLock); // } // return rc; // } // /* // ** Set the database handle used by the wal layer to determine if // ** blocking locks are required. // */ // void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ // if( pagerUseWal(pPager) ){ // sqlite3WalDb(pPager->pWal, db); // } // } // #endif // #ifdef SQLITE_ENABLE_SNAPSHOT // /* // ** If this is a WAL database, obtain a snapshot handle for the snapshot // ** currently open. Otherwise, return an error. // */ // int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ // int rc = SQLITE_ERROR; // if( pPager->pWal ){ // rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); // } // return rc; // } // /* // ** If this is a WAL database, store a pointer to pSnapshot. Next time a // ** read transaction is opened, attempt to read from the snapshot it // ** identifies. If this is not a WAL database, return an error. // */ // int sqlite3PagerSnapshotOpen( // Pager *pPager, // sqlite3_snapshot *pSnapshot // ){ // int rc = SQLITE_OK; // if( pPager->pWal ){ // sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); // }else{ // rc = SQLITE_ERROR; // } // return rc; // } // /* // ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this // ** is not a WAL database, return an error. // */ // int sqlite3PagerSnapshotRecover(Pager *pPager){ // int rc; // if( pPager->pWal ){ // rc = sqlite3WalSnapshotRecover(pPager->pWal); // }else{ // rc = SQLITE_ERROR; // } // return rc; // } // /* // ** The caller currently has a read transaction open on the database. // ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, // ** this function takes a SHARED lock on the CHECKPOINTER slot and then // ** checks if the snapshot passed as the second argument is still // ** available. If so, SQLITE_OK is returned. // ** // ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if // ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error // ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER // ** lock is released before returning. // */ // int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ // int rc; // if( pPager->pWal ){ // rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); // }else{ // rc = SQLITE_ERROR; // } // return rc; // } // /* // ** Release a lock obtained by an earlier successful call to // ** sqlite3PagerSnapshotCheck(). // */ // void sqlite3PagerSnapshotUnlock(Pager *pPager){ // assert( pPager->pWal ); // sqlite3WalSnapshotUnlock(pPager->pWal); // } // #endif /* SQLITE_ENABLE_SNAPSHOT */ // #endif /* !SQLITE_OMIT_WAL */ // #ifdef SQLITE_ENABLE_ZIPVFS // /* // ** A read-lock must be held on the pager when this function is called. If // ** the pager is in WAL mode and the WAL file currently contains one or more // ** frames, return the size in bytes of the page images stored within the // ** WAL frames. Otherwise, if this is not a WAL database or the WAL file // ** is empty, return 0. // */ // int sqlite3PagerWalFramesize(Pager *pPager){ // assert( pPager->eState>=PAGER_READER ); // return sqlite3WalFramesize(pPager->pWal); // } // #endif