---
title: 产品简介
description: 简要介绍 TDengine 的主要功能
toc_max_heading_level: 2
---
TDengine 是一款开源、高性能、云原生的[时序数据库](https://tdengine.com/tsdb/),且针对物联网、车联网以及工业互联网进行了优化。TDengine 的代码,包括其集群功能,都在 GNU AGPL v3.0 下开源。除核心的时序数据库功能外,TDengine 还提供[缓存](../develop/cache/)、[数据订阅](../develop/tmq)、[流式计算](../develop/stream)等其它功能以降低系统复杂度及研发和运维成本。
本章节介绍TDengine的主要功能、竞争优势、适用场景、与其他数据库的对比测试等等,让大家对TDengine有个整体的了解。
## 主要功能
TDengine的主要功能如下:
1. 写入数据,支持
- [SQL 写入](../develop/insert-data/sql-writing)
- [Schemaless 写入](../reference/schemaless/),支持多种标准写入协议
- [InfluxDB LINE 协议](../develop/insert-data/influxdb-line)
- [OpenTSDB Telnet 协议](../develop/insert-data/opentsdb-telnet)
- [OpenTSDB JSON 协议](../develop/insert-data/opentsdb-json)
- 与多种第三方工具的无缝集成,它们都可以仅通过配置而无需任何代码即可将数据写入 TDengine
- [Telegraf](../third-party/telegraf)
- [Prometheus](../third-party/prometheus)
- [StatsD](../third-party/statsd)
- [collectd](../third-party/collectd)
- [icinga2](../third-party/icinga2)
- [TCollector](../third-party/tcollector)
- [EMQ](../third-party/emq-broker)
- [HiveMQ](../third-party/hive-mq-broker) ;
2. 查询数据,支持
- [标准SQL](../taos-sql),含嵌套查询
- [时序数据特色函数](../taos-sql/function/#time-series-extensions)
- [时序顺序特色查询](../taos-sql/distinguished),例如降采样、插值、累加和、时间加权平均、状态窗口、会话窗口等
- [用户自定义函数](../taos-sql/udf)
3. [缓存](../develop/cache),将每张表的最后一条记录缓存起来,这样无需 Redis 就能对时序数据进行高效处理
4. [流式计算](../develop/stream)(Stream Processing),TDengine 不仅支持连续查询,还支持事件驱动的流式计算,这样在处理时序数据时就无需 Flink 或 Spark 这样流计算组件
5. [数据订阅](../develop/tmq),应用程序可以订阅一张表或一组表的数据,API 与 Kafka 相同,而且可以指定过滤条件
6. 可视化
- 支持与 [Grafana](../third-party/grafana/) 的无缝集成
- 支持与 Google Data Studio 的无缝集成
7. 集群
- 集群部署(../deployment/),可以通过增加节点进行水平扩展以提升处理能力
- 可以通过 [Kubernets 部署 TDengine](../deployment/k8s/)
- 通过多副本提供高可用能力
8. 管理
- [监控](../operation/monitor)运行中的 TDengine 实例
- 多种[数据导入](../operation/import)方式
- 多种[数据导出](../operation/export)方式
9. 工具
- 提供交互式[命令行程序](../reference/taos-shell),便于管理集群,检查系统状态,做即席查询
- 提供压力测试工具[taosBenchmark](../reference/taosbenchmark),用于测试 TDengine 的性能
10. 编程
- 提供各种语言的[连接器](../connector): 如 [C/C++](../connector/cpp), [Java](../connector/java), [Go](../connector/go), [Node.JS](../connector/node), [Rust](../connector/rust), [Python](../connector/python), [C#](../connector/csharp) 等
- 支持 [REST 接口](../connector/rest-api/)
更多细节功能,请阅读整个文档。
## 竞争优势
由于 TDengine 充分利用了[时序数据特点](https://www.taosdata.com/blog/2019/07/09/105.html),比如结构化、无需事务、很少删除或更新、写多读少等等,因此与其他时序数据库相比,TDengine 有以下特点:
- **[高性能](https://www.taosdata.com/tdengine/fast)**:TDengine 是唯一一个解决了时序数据存储的高基数难题的时序数据库,支持上亿数据采集点,并在数据插入、查询和数据压缩上远胜其它时序数据库。
- **[极简时序数据平台](https://www.taosdata.com/tdengine/simplified_solution_for_time-series_data_processing)**:TDengine 内建缓存、流式计算和数据订阅等功能,为时序数据的处理提供了极简的解决方案,从而大幅降低了业务系统的设计复杂度和运维成本。
- **[云原生](https://www.taosdata.com/tdengine/cloud_native_time-series_database)**:通过原生的分布式设计、数据分片和分区、存算分离、RAFT 协议、Kubernets 部署和完整的可观测性,TDengine 是一款云原生时序数据库并且能够部署在公有云、私有云和混合云上。
- **[简单易用](https://www.taosdata.com/tdengine/ease_of_use)**:对系统管理员来说,TDengine 大幅降低了管理和维护的代价。对开发者来说, TDengine 提供了简单的接口、极简的解决方案和与第三方工具的无缝集成。对数据分析专家来说,TDengine 提供了便捷的数据访问。
- **[分析能力](https://www.taosdata.com/tdengine/easy_data_analytics)**:通过超级表、存储计算分离、分区分片、预计算和其它技术,TDengine 能够高效地浏览、格式化和访问数据。
- **[核心开源](https://www.taosdata.com/tdengine/open_source_time-series_database)**:TDengine 的核心代码包括集群功能全部在开源协议下公开。全球超过 140k 个运行实例,GitHub Star 19k,且拥有一个活跃的开发者社区。
采用 TDengine,可将典型的物联网、车联网、工业互联网大数据平台的总拥有成本大幅降低。表现在几个方面:
1. 由于其超强性能,它能将系统需要的计算资源和存储资源大幅降低
2. 因为支持 SQL,能与众多第三方软件无缝集成,学习迁移成本大幅下降
3. 因为是一极简的时序数据平台,系统复杂度、研发和运营成本大幅降低
## 技术生态
在整个时序大数据平台中,TDengine 在其中扮演的角色如下: