/* * Copyright (c) 2019 TAOS Data, Inc. * * This program is free software: you can use, redistribute, and/or modify * it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include "index_cache.h" #include "index_util.h" #include "tcompare.h" #include "tsched.h" #define MAX_INDEX_KEY_LEN 256 // test only, change later #define MEM_TERM_LIMIT 10 * 10000 #define MEM_THRESHOLD 1024 * 1024 #define MEM_ESTIMATE_RADIO 1.5 static void indexMemRef(MemTable* tbl); static void indexMemUnRef(MemTable* tbl); static void indexCacheTermDestroy(CacheTerm* ct); static int32_t indexCacheTermCompare(const void* l, const void* r); static char* indexCacheTermGet(const void* pData); static MemTable* indexInternalCacheCreate(int8_t type); static void doMergeWork(SSchedMsg* msg); static bool indexCacheIteratorNext(Iterate* itera); static IterateValue* indexCacheIteratorGetValue(Iterate* iter); IndexCache* indexCacheCreate(SIndex* idx, uint64_t suid, const char* colName, int8_t type) { IndexCache* cache = calloc(1, sizeof(IndexCache)); if (cache == NULL) { indexError("failed to create index cache"); return NULL; }; cache->mem = indexInternalCacheCreate(type); cache->colName = tstrdup(colName); cache->type = type; cache->index = idx; cache->version = 0; cache->suid = suid; cache->occupiedMem = 0; pthread_mutex_init(&cache->mtx, NULL); pthread_cond_init(&cache->finished, NULL); indexCacheRef(cache); return cache; } void indexCacheDebug(IndexCache* cache) { MemTable* tbl = NULL; pthread_mutex_lock(&cache->mtx); tbl = cache->mem; indexMemRef(tbl); pthread_mutex_unlock(&cache->mtx); { SSkipList* slt = tbl->mem; SSkipListIterator* iter = tSkipListCreateIter(slt); while (tSkipListIterNext(iter)) { SSkipListNode* node = tSkipListIterGet(iter); CacheTerm* ct = (CacheTerm*)SL_GET_NODE_DATA(node); if (ct != NULL) { // TODO, add more debug info indexInfo("{colVal: %s, version: %d} \t", ct->colVal, ct->version); } } tSkipListDestroyIter(iter); indexMemUnRef(tbl); } { pthread_mutex_lock(&cache->mtx); tbl = cache->imm; indexMemRef(tbl); pthread_mutex_unlock(&cache->mtx); if (tbl != NULL) { SSkipList* slt = tbl->mem; SSkipListIterator* iter = tSkipListCreateIter(slt); while (tSkipListIterNext(iter)) { SSkipListNode* node = tSkipListIterGet(iter); CacheTerm* ct = (CacheTerm*)SL_GET_NODE_DATA(node); if (ct != NULL) { // TODO, add more debug info indexInfo("{colVal: %s, version: %d} \t", ct->colVal, ct->version); } } tSkipListDestroyIter(iter); } indexMemUnRef(tbl); } } void indexCacheDestroySkiplist(SSkipList* slt) { SSkipListIterator* iter = tSkipListCreateIter(slt); while (tSkipListIterNext(iter)) { SSkipListNode* node = tSkipListIterGet(iter); CacheTerm* ct = (CacheTerm*)SL_GET_NODE_DATA(node); if (ct != NULL) { free(ct->colVal); free(ct); } } tSkipListDestroyIter(iter); tSkipListDestroy(slt); } void indexCacheDestroyImm(IndexCache* cache) { if (cache == NULL) { return; } MemTable* tbl = NULL; pthread_mutex_lock(&cache->mtx); tbl = cache->imm; cache->imm = NULL; // or throw int bg thread pthread_cond_broadcast(&cache->finished); pthread_mutex_unlock(&cache->mtx); indexMemUnRef(tbl); indexMemUnRef(tbl); } void indexCacheDestroy(void* cache) { IndexCache* pCache = cache; if (pCache == NULL) { return; } indexMemUnRef(pCache->mem); indexMemUnRef(pCache->imm); free(pCache->colName); pthread_mutex_destroy(&pCache->mtx); pthread_cond_destroy(&pCache->finished); free(pCache); } Iterate* indexCacheIteratorCreate(IndexCache* cache) { Iterate* iiter = calloc(1, sizeof(Iterate)); if (iiter == NULL) { return NULL; } pthread_mutex_lock(&cache->mtx); indexMemRef(cache->imm); MemTable* tbl = cache->imm; iiter->val.val = taosArrayInit(1, sizeof(uint64_t)); iiter->val.colVal = NULL; iiter->iter = tbl != NULL ? tSkipListCreateIter(tbl->mem) : NULL; iiter->next = indexCacheIteratorNext; iiter->getValue = indexCacheIteratorGetValue; pthread_mutex_unlock(&cache->mtx); return iiter; } void indexCacheIteratorDestroy(Iterate* iter) { if (iter == NULL) { return; } tSkipListDestroyIter(iter->iter); iterateValueDestroy(&iter->val, true); free(iter); } int indexCacheSchedToMerge(IndexCache* pCache) { SSchedMsg schedMsg = {0}; schedMsg.fp = doMergeWork; schedMsg.ahandle = pCache; schedMsg.thandle = NULL; schedMsg.msg = NULL; taosScheduleTask(indexQhandle, &schedMsg); } static void indexCacheMakeRoomForWrite(IndexCache* cache) { while (true) { if (cache->occupiedMem * MEM_ESTIMATE_RADIO < MEM_THRESHOLD) { break; } else if (cache->imm != NULL) { // TODO: wake up by condition variable pthread_cond_wait(&cache->finished, &cache->mtx); } else { indexCacheRef(cache); cache->imm = cache->mem; cache->mem = indexInternalCacheCreate(cache->type); cache->occupiedMem = 0; // sched to merge // unref cache in bgwork indexCacheSchedToMerge(cache); } } } int indexCachePut(void* cache, SIndexTerm* term, uint64_t uid) { if (cache == NULL) { return -1; } IndexCache* pCache = cache; indexCacheRef(pCache); // encode data CacheTerm* ct = calloc(1, sizeof(CacheTerm)); if (cache == NULL) { return -1; } // set up key ct->colType = term->colType; ct->colVal = (char*)calloc(1, sizeof(char) * (term->nColVal + 1)); memcpy(ct->colVal, term->colVal, term->nColVal); ct->version = atomic_add_fetch_32(&pCache->version, 1); // set value ct->uid = uid; ct->operaType = term->operType; // ugly code, refactor later int64_t estimate = sizeof(ct) + strlen(ct->colVal); pthread_mutex_lock(&pCache->mtx); pCache->occupiedMem += estimate; indexCacheMakeRoomForWrite(pCache); MemTable* tbl = pCache->mem; indexMemRef(tbl); tSkipListPut(tbl->mem, (char*)ct); indexMemUnRef(tbl); pthread_mutex_unlock(&pCache->mtx); indexCacheUnRef(pCache); return 0; // encode end } int indexCacheDel(void* cache, const char* fieldValue, int32_t fvlen, uint64_t uid, int8_t operType) { IndexCache* pCache = cache; return 0; } static int indexQueryMem(MemTable* mem, CacheTerm* ct, EIndexQueryType qtype, SArray* result, STermValueType* s) { if (mem == NULL) { return 0; } char* key = indexCacheTermGet(ct); SSkipListIterator* iter = tSkipListCreateIterFromVal(mem->mem, key, TSDB_DATA_TYPE_BINARY, TSDB_ORDER_ASC); while (tSkipListIterNext(iter)) { SSkipListNode* node = tSkipListIterGet(iter); if (node != NULL) { CacheTerm* c = (CacheTerm*)SL_GET_NODE_DATA(node); if (c->operaType == ADD_VALUE || qtype == QUERY_TERM) { if (strcmp(c->colVal, ct->colVal) == 0) { taosArrayPush(result, &c->uid); *s = kTypeValue; } else { break; } } else if (c->operaType == DEL_VALUE) { // table is del, not need *s = kTypeDeletion; break; } } } tSkipListDestroyIter(iter); return 0; } int indexCacheSearch(void* cache, SIndexTermQuery* query, SArray* result, STermValueType* s) { if (cache == NULL) { return 0; } IndexCache* pCache = cache; MemTable *mem = NULL, *imm = NULL; pthread_mutex_lock(&pCache->mtx); mem = pCache->mem; imm = pCache->imm; indexMemRef(mem); indexMemRef(imm); pthread_mutex_unlock(&pCache->mtx); SIndexTerm* term = query->term; EIndexQueryType qtype = query->qType; CacheTerm ct = {.colVal = term->colVal, .version = atomic_load_32(&pCache->version)}; int ret = indexQueryMem(mem, &ct, qtype, result, s); if (ret == 0 && *s != kTypeDeletion) { // continue search in imm ret = indexQueryMem(imm, &ct, qtype, result, s); } indexMemUnRef(mem); indexMemUnRef(imm); return ret; } void indexCacheRef(IndexCache* cache) { if (cache == NULL) { return; } int ref = T_REF_INC(cache); UNUSED(ref); } void indexCacheUnRef(IndexCache* cache) { if (cache == NULL) { return; } int ref = T_REF_DEC(cache); if (ref == 0) { indexCacheDestroy(cache); } } void indexMemRef(MemTable* tbl) { if (tbl == NULL) { return; } int ref = T_REF_INC(tbl); UNUSED(ref); } void indexMemUnRef(MemTable* tbl) { if (tbl == NULL) { return; } int ref = T_REF_DEC(tbl); if (ref == 0) { SSkipList* slt = tbl->mem; indexCacheDestroySkiplist(slt); free(tbl); } } static void indexCacheTermDestroy(CacheTerm* ct) { if (ct == NULL) { return; } free(ct->colVal); free(ct); } static char* indexCacheTermGet(const void* pData) { CacheTerm* p = (CacheTerm*)pData; return (char*)p; } static int32_t indexCacheTermCompare(const void* l, const void* r) { CacheTerm* lt = (CacheTerm*)l; CacheTerm* rt = (CacheTerm*)r; // compare colVal int32_t cmp = strcmp(lt->colVal, rt->colVal); if (cmp == 0) { return rt->version - lt->version; } return cmp; } static MemTable* indexInternalCacheCreate(int8_t type) { MemTable* tbl = calloc(1, sizeof(MemTable)); indexMemRef(tbl); if (type == TSDB_DATA_TYPE_BINARY || type == TSDB_DATA_TYPE_NCHAR) { tbl->mem = tSkipListCreate(MAX_SKIP_LIST_LEVEL, type, MAX_INDEX_KEY_LEN, indexCacheTermCompare, SL_ALLOW_DUP_KEY, indexCacheTermGet); } return tbl; } static void doMergeWork(SSchedMsg* msg) { IndexCache* pCache = msg->ahandle; SIndex* sidx = (SIndex*)pCache->index; indexFlushCacheToTFile(sidx, pCache); } static bool indexCacheIteratorNext(Iterate* itera) { SSkipListIterator* iter = itera->iter; if (iter == NULL) { return false; } IterateValue* iv = &itera->val; iterateValueDestroy(iv, false); // IterateValue* iv = &itera->val; // IterateValue tIterVal = {.colVal = NULL, .val = taosArrayInit(1, sizeof(uint64_t))}; bool next = tSkipListIterNext(iter); if (next) { SSkipListNode* node = tSkipListIterGet(iter); CacheTerm* ct = (CacheTerm*)SL_GET_NODE_DATA(node); // equal func // if (iv->colVal != NULL && ct->colVal != NULL) { // if (0 == strcmp(iv->colVal, ct->colVal)) { if (iv->type == ADD_VALUE) } //} else { // tIterVal.colVal = calloc(1, strlen(ct->colVal) + 1); // tIterval.colVal = tstrdup(ct->colVal); //} iv->type = ct->operaType; iv->colVal = tstrdup(ct->colVal); // iv->colVal = calloc(1, strlen(ct->colVal) + 1); // memcpy(iv->colVal, ct->colVal, strlen(ct->colVal)); taosArrayPush(iv->val, &ct->uid); } // IterateValue* iv = &itera->val; // iterateValueDestroy(iv, true); //*iv = tIterVal; return next; } static IterateValue* indexCacheIteratorGetValue(Iterate* iter) { // opt later return &iter->val; }