/* ** 2008 August 05 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements that page cache. */ #include "sqliteInt.h" /* ** A complete page cache is an instance of this structure. Every ** entry in the cache holds a single page of the database file. The ** btree layer only operates on the cached copy of the database pages. ** ** A page cache entry is "clean" if it exactly matches what is currently ** on disk. A page is "dirty" if it has been modified and needs to be ** persisted to disk. ** ** pDirty, pDirtyTail, pSynced: ** All dirty pages are linked into the doubly linked list using ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order ** such that p was added to the list more recently than p->pDirtyNext. ** PCache.pDirty points to the first (newest) element in the list and ** pDirtyTail to the last (oldest). ** ** The PCache.pSynced variable is used to optimize searching for a dirty ** page to eject from the cache mid-transaction. It is better to eject ** a page that does not require a journal sync than one that does. ** Therefore, pSynced is maintained so that it *almost* always points ** to either the oldest page in the pDirty/pDirtyTail list that has a ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one ** (so that the right page to eject can be found by following pDirtyPrev ** pointers). */ struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ PgHdr *pSynced; /* Last synced page in dirty page list */ int nRefSum; /* Sum of ref counts over all pages */ int szCache; /* Configured cache size */ int szSpill; /* Size before spilling occurs */ int szPage; /* Size of every page in this cache */ int szExtra; /* Size of extra space for each page */ u8 bPurgeable; /* True if pages are on backing store */ u8 eCreate; /* eCreate value for for xFetch() */ int (*xStress)(void *, PgHdr *); /* Call to try make a page clean */ void * pStress; /* Argument to xStress */ sqlite3_pcache *pCache; /* Pluggable cache module */ }; /********************************** Test and Debug Logic **********************/ /* ** Debug tracing macros. Enable by by changing the "0" to "1" and ** recompiling. ** ** When sqlite3PcacheTrace is 1, single line trace messages are issued. ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries ** is displayed for many operations, resulting in a lot of output. */ #if defined(SQLITE_DEBUG) && 0 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ #define pcacheTrace(X) \ if (sqlite3PcacheTrace) { \ sqlite3DebugPrintf X; \ } void pcacheDump(PCache *pCache) { int N; int i, j; sqlite3_pcache_page *pLower; PgHdr * pPg; unsigned char * a; if (sqlite3PcacheTrace < 2) return; if (pCache->pCache == 0) return; N = sqlite3PcachePagecount(pCache); if (N > sqlite3PcacheMxDump) N = sqlite3PcacheMxDump; for (i = 1; i <= N; i++) { pLower = pcache2.xFetch(pCache->pCache, i, 0); if (pLower == 0) continue; pPg = (PgHdr *)pLower->pExtra; printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags); a = (unsigned char *)pLower->pBuf; for (j = 0; j < 12; j++) printf("%02x", a[j]); printf("\n"); if (pPg->pPage == 0) { pcache2.xUnpin(pCache->pCache, pLower, 0); } } } #else #define pcacheTrace(X) #define pcacheDump(X) #endif // /* // ** Check invariants on a PgHdr entry. Return true if everything is OK. // ** Return false if any invariant is violated. // ** // ** This routine is for use inside of assert() statements only. For // ** example: // ** // ** assert( sqlite3PcachePageSanity(pPg) ); // */ // #ifdef SQLITE_DEBUG // int sqlite3PcachePageSanity(PgHdr *pPg) { // PCache *pCache; // assert(pPg != 0); // assert(pPg->pgno > 0 || pPg->pPager == 0); /* Page number is 1 or more */ // pCache = pPg->pCache; // assert(pCache != 0); /* Every page has an associated PCache */ // if (pPg->flags & PGHDR_CLEAN) { // assert((pPg->flags & PGHDR_DIRTY) == 0); /* Cannot be both CLEAN and DIRTY */ // assert(pCache->pDirty != pPg); /* CLEAN pages not on dirty list */ // assert(pCache->pDirtyTail != pPg); // } // /* WRITEABLE pages must also be DIRTY */ // if (pPg->flags & PGHDR_WRITEABLE) { // assert(pPg->flags & PGHDR_DIRTY); /* WRITEABLE implies DIRTY */ // } // /* NEED_SYNC can be set independently of WRITEABLE. This can happen, // ** for example, when using the sqlite3PagerDontWrite() optimization: // ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. // ** (2) Page X moved to freelist, WRITEABLE is cleared // ** (3) Page X reused, WRITEABLE is set again // ** If NEED_SYNC had been cleared in step 2, then it would not be reset // ** in step 3, and page might be written into the database without first // ** syncing the rollback journal, which might cause corruption on a power // ** loss. // ** // ** Another example is when the database page size is smaller than the // ** disk sector size. When any page of a sector is journalled, all pages // ** in that sector are marked NEED_SYNC even if they are still CLEAN, just // ** in case they are later modified, since all pages in the same sector // ** must be journalled and synced before any of those pages can be safely // ** written. // */ // return 1; // } // #endif /* SQLITE_DEBUG */ /********************************** Linked List Management ********************/ /* Allowed values for second argument to pcacheManageDirtyList() */ #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ /* ** Manage pPage's participation on the dirty list. Bits of the addRemove ** argument determines what operation to do. The 0x01 bit means first ** remove pPage from the dirty list. The 0x02 means add pPage back to ** the dirty list. Doing both moves pPage to the front of the dirty list. */ static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove) { PCache *p = pPage->pCache; pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, addRemove == 1 ? "REMOVE" : addRemove == 2 ? "ADD" : "FRONT", pPage->pgno)); if (addRemove & PCACHE_DIRTYLIST_REMOVE) { assert(pPage->pDirtyNext || pPage == p->pDirtyTail); assert(pPage->pDirtyPrev || pPage == p->pDirty); /* Update the PCache1.pSynced variable if necessary. */ if (p->pSynced == pPage) { p->pSynced = pPage->pDirtyPrev; } if (pPage->pDirtyNext) { pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; } else { assert(pPage == p->pDirtyTail); p->pDirtyTail = pPage->pDirtyPrev; } if (pPage->pDirtyPrev) { pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; } else { /* If there are now no dirty pages in the cache, set eCreate to 2. ** This is an optimization that allows sqlite3PcacheFetch() to skip ** searching for a dirty page to eject from the cache when it might ** otherwise have to. */ assert(pPage == p->pDirty); p->pDirty = pPage->pDirtyNext; assert(p->bPurgeable || p->eCreate == 2); if (p->pDirty == 0) { /*OPTIMIZATION-IF-TRUE*/ assert(p->bPurgeable == 0 || p->eCreate == 1); p->eCreate = 2; } } } if (addRemove & PCACHE_DIRTYLIST_ADD) { pPage->pDirtyPrev = 0; pPage->pDirtyNext = p->pDirty; if (pPage->pDirtyNext) { assert(pPage->pDirtyNext->pDirtyPrev == 0); pPage->pDirtyNext->pDirtyPrev = pPage; } else { p->pDirtyTail = pPage; if (p->bPurgeable) { assert(p->eCreate == 2); p->eCreate = 1; } } p->pDirty = pPage; /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set ** pSynced to point to it. Checking the NEED_SYNC flag is an ** optimization, as if pSynced points to a page with the NEED_SYNC ** flag set sqlite3PcacheFetchStress() searches through all newer ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ if (!p->pSynced && 0 == (pPage->flags & PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ ) { p->pSynced = pPage; } } pcacheDump(p); } /* ** Wrapper around the pluggable caches xUnpin method. If the cache is ** being used for an in-memory database, this function is a no-op. */ static void pcacheUnpin(PgHdr *p) { if (p->pCache->bPurgeable) { pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); pcacheDump(p->pCache); } } /* ** Compute the number of pages of cache requested. p->szCache is the ** cache size requested by the "PRAGMA cache_size" statement. */ static int numberOfCachePages(PCache *p) { if (p->szCache >= 0) { /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the ** suggested cache size is set to N. */ return p->szCache; } else { i64 n; /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the ** number of cache pages is adjusted to be a number of pages that would ** use approximately abs(N*1024) bytes of memory based on the current ** page size. */ n = ((-1024 * (i64)p->szCache) / (p->szPage + p->szExtra)); if (n > 1000000000) n = 1000000000; return (int)n; } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these ** functions are threadsafe. */ int sqlite3PcacheInitialize(void) { return pcache2.xInit(pcache2.pArg); } void sqlite3PcacheShutdown(void) { if (pcache2.xShutdown) { /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ pcache2.xShutdown(pcache2.pArg); } } /* ** Return the size in bytes of a PCache object. */ int sqlite3PcacheSize(void) { return sizeof(PCache); } /* ** Create a new PCache object. Storage space to hold the object ** has already been allocated and is passed in as the p pointer. ** The caller discovers how much space needs to be allocated by ** calling sqlite3PcacheSize(). ** ** szExtra is some extra space allocated for each page. The first ** 8 bytes of the extra space will be zeroed as the page is allocated, ** but remaining content will be uninitialized. Though it is opaque ** to this module, the extra space really ends up being the MemPage ** structure in the pager. */ int sqlite3PcacheOpen(int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void *, PgHdr *), /* Call to try to make pages clean */ void * pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ) { memset(p, 0, sizeof(PCache)); p->szPage = 1; p->szExtra = szExtra; assert(szExtra >= 8); /* First 8 bytes will be zeroed */ p->bPurgeable = bPurgeable; p->eCreate = 2; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; p->szSpill = 1; pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n", p, szPage, bPurgeable)); return sqlite3PcacheSetPageSize(p, szPage); } /* ** Change the page size for PCache object. The caller must ensure that there ** are no outstanding page references when this function is called. */ int sqlite3PcacheSetPageSize(PCache *pCache, int szPage) { assert(pCache->nRefSum == 0 && pCache->pDirty == 0); if (pCache->szPage) { sqlite3_pcache *pNew; pNew = pcache2.xCreate(szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), pCache->bPurgeable); if (pNew == 0) return SQLITE_NOMEM; pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if (pCache->pCache) { pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; pCache->szPage = szPage; pcacheTrace(("%p.PAGESIZE %d\n", pCache, szPage)); } return 0; } /* ** Try to obtain a page from the cache. ** ** This routine returns a pointer to an sqlite3_pcache_page object if ** such an object is already in cache, or if a new one is created. ** This routine returns a NULL pointer if the object was not in cache ** and could not be created. ** ** The createFlags should be 0 to check for existing pages and should ** be 3 (not 1, but 3) to try to create a new page. ** ** If the createFlag is 0, then NULL is always returned if the page ** is not already in the cache. If createFlag is 1, then a new page ** is created only if that can be done without spilling dirty pages ** and without exceeding the cache size limit. ** ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly ** initialize the sqlite3_pcache_page object and convert it into a ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() ** routines are split this way for performance reasons. When separated ** they can both (usually) operate without having to push values to ** the stack on entry and pop them back off on exit, which saves a ** lot of pushing and popping. */ sqlite3_pcache_page *sqlite3PcacheFetch(PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag /* If true, create page if it does not exist already */ ) { int eCreate; sqlite3_pcache_page *pRes; assert(pCache != 0); assert(pCache->pCache != 0); assert(createFlag == 3 || createFlag == 0); assert(pCache->eCreate == ((pCache->bPurgeable && pCache->pDirty) ? 1 : 2)); /* eCreate defines what to do if the page does not exist. ** 0 Do not allocate a new page. (createFlag==0) ** 1 Allocate a new page if doing so is inexpensive. ** (createFlag==1 AND bPurgeable AND pDirty) ** 2 Allocate a new page even it doing so is difficult. ** (createFlag==1 AND !(bPurgeable AND pDirty) */ eCreate = createFlag & pCache->eCreate; assert(eCreate == 0 || eCreate == 1 || eCreate == 2); assert(createFlag == 0 || pCache->eCreate == eCreate); assert(createFlag == 0 || eCreate == 1 + (!pCache->bPurgeable || !pCache->pDirty)); pRes = pcache2.xFetch(pCache->pCache, pgno, eCreate); pcacheTrace(("%p.FETCH %d%s (result: %p)\n", pCache, pgno, createFlag ? " create" : "", pRes)); return pRes; } /* ** If the sqlite3PcacheFetch() routine is unable to allocate a new ** page because no clean pages are available for reuse and the cache ** size limit has been reached, then this routine can be invoked to ** try harder to allocate a page. This routine might invoke the stress ** callback to spill dirty pages to the journal. It will then try to ** allocate the new page and will only fail to allocate a new page on ** an OOM error. ** ** This routine should be invoked only after sqlite3PcacheFetch() fails. */ int sqlite3PcacheFetchStress(PCache * pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ sqlite3_pcache_page **ppPage /* Write result here */ ) { PgHdr *pPg; if (pCache->eCreate == 2) return 0; if (sqlite3PcachePagecount(pCache) > pCache->szSpill) { /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. ** ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC ** flag is currently referenced, then the following may leave pSynced ** set incorrectly (pointing to other than the LRU page with NEED_SYNC ** cleared). This is Ok, as pSynced is just an optimization. */ for (pPg = pCache->pSynced; pPg && (pPg->nRef || (pPg->flags & PGHDR_NEED_SYNC)); pPg = pPg->pDirtyPrev) ; pCache->pSynced = pPg; if (!pPg) { for (pPg = pCache->pDirtyTail; pPg && pPg->nRef; pPg = pPg->pDirtyPrev) ; } if (pPg) { int rc; #ifdef SQLITE_LOG_CACHE_SPILL sqlite3_log(SQLITE_FULL, "spill page %d making room for %d - cache used: %d/%d", pPg->pgno, pgno, pcache2.xPagecount(pCache->pCache), numberOfCachePages(pCache)); #endif pcacheTrace(("%p.SPILL %d\n", pCache, pPg->pgno)); rc = pCache->xStress(pCache->pStress, pPg); pcacheDump(pCache); if (rc != 0 && rc != SQLITE_BUSY) { return rc; } } } *ppPage = pcache2.xFetch(pCache->pCache, pgno, 2); return *ppPage == 0 ? SQLITE_NOMEM : 0; } /* ** This is a helper routine for sqlite3PcacheFetchFinish() ** ** In the uncommon case where the page being fetched has not been ** initialized, this routine is invoked to do the initialization. ** This routine is broken out into a separate function since it ** requires extra stack manipulation that can be avoided in the common ** case. */ static PgHdr *pcacheFetchFinishWithInit(PCache * pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ) { PgHdr *pPgHdr; assert(pPage != 0); pPgHdr = (PgHdr *)pPage->pExtra; assert(pPgHdr->pPage == 0); memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr, pDirty)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, 8); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; pPgHdr->flags = PGHDR_CLEAN; return sqlite3PcacheFetchFinish(pCache, pgno, pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ PgHdr *sqlite3PcacheFetchFinish(PCache * pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ) { PgHdr *pPgHdr; assert(pPage != 0); pPgHdr = (PgHdr *)pPage->pExtra; if (!pPgHdr->pPage) { return pcacheFetchFinishWithInit(pCache, pgno, pPage); } pCache->nRefSum++; pPgHdr->nRef++; // assert(sqlite3PcachePageSanity(pPgHdr)); return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made eligible for recycling. */ void sqlite3PcacheRelease(PgHdr *p) { assert(p->nRef > 0); p->pCache->nRefSum--; if ((--p->nRef) == 0) { if (p->flags & PGHDR_CLEAN) { pcacheUnpin(p); } else { pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); } } } /* ** Increase the reference count of a supplied page by 1. */ void sqlite3PcacheRef(PgHdr *p) { assert(p->nRef > 0); // assert(sqlite3PcachePageSanity(p)); p->nRef++; p->pCache->nRefSum++; } /* ** Drop a page from the cache. There must be exactly one reference to the ** page. This function deletes that reference, so after it returns the ** page pointed to by p is invalid. */ void sqlite3PcacheDrop(PgHdr *p) { assert(p->nRef == 1); // assert(sqlite3PcachePageSanity(p)); if (p->flags & PGHDR_DIRTY) { pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); } p->pCache->nRefSum--; pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); } /* ** Make sure the page is marked as dirty. If it isn't dirty already, ** make it so. */ void sqlite3PcacheMakeDirty(PgHdr *p) { assert(p->nRef > 0); // assert(sqlite3PcachePageSanity(p)); if (p->flags & (PGHDR_CLEAN | PGHDR_DONT_WRITE)) { /*OPTIMIZATION-IF-FALSE*/ p->flags &= ~PGHDR_DONT_WRITE; if (p->flags & PGHDR_CLEAN) { p->flags ^= (PGHDR_DIRTY | PGHDR_CLEAN); pcacheTrace(("%p.DIRTY %d\n", p->pCache, p->pgno)); assert((p->flags & (PGHDR_DIRTY | PGHDR_CLEAN)) == PGHDR_DIRTY); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); } // assert(sqlite3PcachePageSanity(p)); } } /* ** Make sure the page is marked as clean. If it isn't clean already, ** make it so. */ void sqlite3PcacheMakeClean(PgHdr *p) { // assert(sqlite3PcachePageSanity(p)); assert((p->flags & PGHDR_DIRTY) != 0); assert((p->flags & PGHDR_CLEAN) == 0); pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); p->flags &= ~(PGHDR_DIRTY | PGHDR_NEED_SYNC | PGHDR_WRITEABLE); p->flags |= PGHDR_CLEAN; pcacheTrace(("%p.CLEAN %d\n", p->pCache, p->pgno)); // assert(sqlite3PcachePageSanity(p)); if (p->nRef == 0) { pcacheUnpin(p); } } /* ** Make every page in the cache clean. */ void sqlite3PcacheCleanAll(PCache *pCache) { PgHdr *p; pcacheTrace(("%p.CLEAN-ALL\n", pCache)); while ((p = pCache->pDirty) != 0) { sqlite3PcacheMakeClean(p); } } /* ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. */ void sqlite3PcacheClearWritable(PCache *pCache) { PgHdr *p; pcacheTrace(("%p.CLEAR-WRITEABLE\n", pCache)); for (p = pCache->pDirty; p; p = p->pDirtyNext) { p->flags &= ~(PGHDR_NEED_SYNC | PGHDR_WRITEABLE); } pCache->pSynced = pCache->pDirtyTail; } /* ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. */ void sqlite3PcacheClearSyncFlags(PCache *pCache) { PgHdr *p; for (p = pCache->pDirty; p; p = p->pDirtyNext) { p->flags &= ~PGHDR_NEED_SYNC; } pCache->pSynced = pCache->pDirtyTail; } /* ** Change the page number of page p to newPgno. */ void sqlite3PcacheMove(PgHdr *p, Pgno newPgno) { PCache *pCache = p->pCache; assert(p->nRef > 0); assert(newPgno > 0); // assert(sqlite3PcachePageSanity(p)); pcacheTrace(("%p.MOVE %d -> %d\n", pCache, p->pgno, newPgno)); pcache2.xRekey(pCache->pCache, p->pPage, p->pgno, newPgno); p->pgno = newPgno; if ((p->flags & PGHDR_DIRTY) && (p->flags & PGHDR_NEED_SYNC)) { pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); } } /* ** Drop every cache entry whose page number is greater than "pgno". The ** caller must ensure that there are no outstanding references to any pages ** other than page 1 with a page number greater than pgno. ** ** If there is a reference to page 1 and the pgno parameter passed to this ** function is 0, then the data area associated with page 1 is zeroed, but ** the page object is not dropped. */ void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno) { if (pCache->pCache) { PgHdr *p; PgHdr *pNext; pcacheTrace(("%p.TRUNCATE %d\n", pCache, pgno)); for (p = pCache->pDirty; p; p = pNext) { pNext = p->pDirtyNext; /* This routine never gets call with a positive pgno except right ** after sqlite3PcacheCleanAll(). So if there are dirty pages, ** it must be that pgno==0. */ assert(p->pgno > 0); if (p->pgno > pgno) { assert(p->flags & PGHDR_DIRTY); sqlite3PcacheMakeClean(p); } } if (pgno == 0 && pCache->nRefSum) { sqlite3_pcache_page *pPage1; pPage1 = pcache2.xFetch(pCache->pCache, 1, 0); if (ALWAYS(pPage1)) { /* Page 1 is always available in cache, because ** pCache->nRefSum>0 */ memset(pPage1->pBuf, 0, pCache->szPage); pgno = 1; } } pcache2.xTruncate(pCache->pCache, pgno + 1); } } /* ** Close a cache. */ void sqlite3PcacheClose(PCache *pCache) { assert(pCache->pCache != 0); pcacheTrace(("%p.CLOSE\n", pCache)); pcache2.xDestroy(pCache->pCache); } /* ** Discard the contents of the cache. */ void sqlite3PcacheClear(PCache *pCache) { sqlite3PcacheTruncate(pCache, 0); } /* ** Merge two lists of pages connected by pDirty and in pgno order. ** Do not bother fixing the pDirtyPrev pointers. */ static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB) { PgHdr result, *pTail; pTail = &result; assert(pA != 0 && pB != 0); for (;;) { if (pA->pgno < pB->pgno) { pTail->pDirty = pA; pTail = pA; pA = pA->pDirty; if (pA == 0) { pTail->pDirty = pB; break; } } else { pTail->pDirty = pB; pTail = pB; pB = pB->pDirty; if (pB == 0) { pTail->pDirty = pA; break; } } } return result.pDirty; } /* ** Sort the list of pages in accending order by pgno. Pages are ** connected by pDirty pointers. The pDirtyPrev pointers are ** corrupted by this sort. ** ** Since there cannot be more than 2^31 distinct pages in a database, ** there cannot be more than 31 buckets required by the merge sorter. ** One extra bucket is added to catch overflow in case something ** ever changes to make the previous sentence incorrect. */ #define N_SORT_BUCKET 32 static PgHdr *pcacheSortDirtyList(PgHdr *pIn) { PgHdr *a[N_SORT_BUCKET], *p; int i; memset(a, 0, sizeof(a)); while (pIn) { p = pIn; pIn = p->pDirty; p->pDirty = 0; for (i = 0; ALWAYS(i < N_SORT_BUCKET - 1); i++) { if (a[i] == 0) { a[i] = p; break; } else { p = pcacheMergeDirtyList(a[i], p); a[i] = 0; } } if (NEVER(i == N_SORT_BUCKET - 1)) { /* To get here, there need to be 2^(N_SORT_BUCKET) elements in ** the input list. But that is impossible. */ a[i] = pcacheMergeDirtyList(a[i], p); } } p = a[0]; for (i = 1; i < N_SORT_BUCKET; i++) { if (a[i] == 0) continue; p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; } return p; } /* ** Return a list of all dirty pages in the cache, sorted by page number. */ PgHdr *sqlite3PcacheDirtyList(PCache *pCache) { PgHdr *p; for (p = pCache->pDirty; p; p = p->pDirtyNext) { p->pDirty = p->pDirtyNext; } return pcacheSortDirtyList(pCache->pDirty); } /* ** Return the total number of references to all pages held by the cache. ** ** This is not the total number of pages referenced, but the sum of the ** reference count for all pages. */ int sqlite3PcacheRefCount(PCache *pCache) { return pCache->nRefSum; } /* ** Return the number of references to the page supplied as an argument. */ int sqlite3PcachePageRefcount(PgHdr *p) { return p->nRef; } /* ** Return the total number of pages in the cache. */ int sqlite3PcachePagecount(PCache *pCache) { assert(pCache->pCache != 0); return pcache2.xPagecount(pCache->pCache); } #ifdef SQLITE_TEST /* ** Get the suggested cache-size value. */ int sqlite3PcacheGetCachesize(PCache *pCache) { return numberOfCachePages(pCache); } #endif /* ** Set the suggested cache-size value. */ void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage) { assert(pCache->pCache != 0); pCache->szCache = mxPage; pcache2.xCachesize(pCache->pCache, numberOfCachePages(pCache)); } /* ** Set the suggested cache-spill value. Make no changes if if the ** argument is zero. Return the effective cache-spill size, which will ** be the larger of the szSpill and szCache. */ int sqlite3PcacheSetSpillsize(PCache *p, int mxPage) { int res; assert(p->pCache != 0); if (mxPage) { if (mxPage < 0) { mxPage = (int)((-1024 * (i64)mxPage) / (p->szPage + p->szExtra)); } p->szSpill = mxPage; } res = numberOfCachePages(p); if (res < p->szSpill) res = p->szSpill; return res; } /* ** Free up as much memory as possible from the page cache. */ void sqlite3PcacheShrink(PCache *pCache) { assert(pCache->pCache != 0); pcache2.xShrink(pCache->pCache); } /* ** Return the size of the header added by this middleware layer ** in the page-cache hierarchy. */ int sqlite3HeaderSizePcache(void) { return ROUND8(sizeof(PgHdr)); } /* ** Return the number of dirty pages currently in the cache, as a percentage ** of the configured cache size. */ int sqlite3PCachePercentDirty(PCache *pCache) { PgHdr *pDirty; int nDirty = 0; int nCache = numberOfCachePages(pCache); for (pDirty = pCache->pDirty; pDirty; pDirty = pDirty->pDirtyNext) nDirty++; return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if there are one or more dirty pages in the cache. Else false. */ int sqlite3PCacheIsDirty(PCache *pCache) { return (pCache->pDirty != 0); } #endif #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)) { PgHdr *pDirty; for (pDirty = pCache->pDirty; pDirty; pDirty = pDirty->pDirtyNext) { xIter(pDirty); } } #endif