# 数据建模 TDengine采用关系型数据模型,需要建库、建表。因此对于一个具体的应用场景,需要考虑库的设计,超级表和普通表的设计。本节不讨论细致的语法规则,只介绍概念。 关于数据建模请参考[视频教程](https://www.taosdata.com/blog/2020/11/11/1945.html)。 ## 创建库 不同类型的数据采集点往往具有不同的数据特征,包括数据采集频率的高低,数据保留时间的长短,副本的数目,数据块的大小,是否允许更新数据等等。为让各种场景下TDengine都能最大效率的工作,TDengine建议将不同数据特征的表创建在不同的库里,因为每个库可以配置不同的存储策略。创建一个库时,除SQL标准的选项外,应用还可以指定保留时长、副本数、内存块个数、时间精度、文件块里最大最小记录条数、是否压缩、一个数据文件覆盖的天数等多种参数。比如: ```mysql CREATE DATABASE power KEEP 365 DAYS 10 BLOCKS 4 UPDATE 1; ``` 上述语句将创建一个名为power的库,这个库的数据将保留365天(超过365天将被自动删除),每10天一个数据文件,内存块数为4,允许更新数据。详细的语法及参数请见 [TAOS SQL 的数据管理](https://www.taosdata.com/cn/documentation/taos-sql#management) 章节。 创建库之后,需要使用SQL命令USE将当前库切换过来,例如: ```mysql USE power; ``` 就当前连接里操作的库换为power,否则对具体表操作前,需要使用“库名.表名”来指定库的名字。 **注意:** - 任何一张表或超级表是属于一个库的,在创建表之前,必须先创建库。 - 处于两个不同库的表是不能进行JOIN操作的。 ## 创建超级表 一个物联网系统,往往存在多种类型的设备,比如对于电网,存在智能电表、变压器、母线、开关等等。为便于多表之间的聚合,使用TDengine, 需要对每个类型的数据采集点创建一超级表。以表一中的智能电表为例,可以使用如下的SQL命令创建超级表: ```mysql CREATE STABLE meters (ts timestamp, current float, voltage int, phase float) TAGS (location binary(64), groupId int); ``` **注意:**这一指令中的 STABLE 关键字,在 2.0.15 之前的版本中需写作 TABLE 。 与创建普通表一样,创建表时,需要提供表名(示例中为meters),表结构Schema,即数据列的定义。第一列必须为时间戳(示例中为ts),其他列为采集的物理量(示例中为current, voltage, phase),数据类型可以为整型、浮点型、字符串等。除此之外,还需要提供标签的schema (示例中为location, groupId),标签的数据类型可以为整型、浮点型、字符串等。采集点的静态属性往往可以作为标签,比如采集点的地理位置、设备型号、设备组ID、管理员ID等等。标签的schema可以事后增加、删除、修改。具体定义以及细节请见 [TAOS SQL 的超级表管理](https://www.taosdata.com/cn/documentation/taos-sql#super-table) 章节。 每一种类型的数据采集点需要建立一个超级表,因此一个物联网系统,往往会有多个超级表。对于电网,我们就需要对智能电表、变压器、母线、开关等都建立一个超级表。在物联网中,一个设备就可能有多个数据采集点(比如一台风力发电的风机,有的采集点采集电流、电压等电参数,有的采集点采集温度、湿度、风向等环境参数),这个时候,对这一类型的设备,需要建立多张超级表。一张超级表里包含的采集物理量必须是同时采集的(时间戳是一致的)。 一张超级表最多容许1024列,如果一个采集点采集的物理量个数超过1024,需要建多张超级表来处理。一个系统可以有多个DB,一个DB里可以有一到多个超级表。 ## 创建表 TDengine对每个数据采集点需要独立建表。与标准的关系型数据一样,一张表有表名,Schema,但除此之外,还可以带有一到多个标签。创建时,需要使用超级表做模板,同时指定标签的具体值。以表一中的智能电表为例,可以使用如下的SQL命令建表: ```mysql CREATE TABLE d1001 USING meters TAGS ("Beijing.Chaoyang", 2); ``` 其中d1001是表名,meters是超级表的表名,后面紧跟标签Location的具体标签值”Beijing.Chaoyang",标签groupId的具体标签值2。虽然在创建表时,需要指定标签值,但可以事后修改。详细细则请见 [TAOS SQL 的表管理](https://www.taosdata.com/cn/documentation/taos-sql#table) 章节。 **注意:**目前 TDengine 没有从技术层面限制使用一个 database (dbA)的超级表作为模板建立另一个 database (dbB)的子表,后续会禁止这种用法,不建议使用这种方法建表。 TDengine建议将数据采集点的全局唯一ID作为表名(比如设备序列号)。但对于有的场景,并没有唯一的ID,可以将多个ID组合成一个唯一的ID。不建议将具有唯一性的ID作为标签值。 **自动建表**:在某些特殊场景中,用户在写数据时并不确定某个数据采集点的表是否存在,此时可在写入数据时使用自动建表语法来创建不存在的表,若该表已存在则不会建立新表。比如: ```mysql INSERT INTO d1001 USING METERS TAGS ("Beijng.Chaoyang", 2) VALUES (now, 10.2, 219, 0.32); ``` 上述SQL语句将记录 (now, 10.2, 219, 0.32) 插入表d1001。如果表d1001还未创建,则使用超级表meters做模板自动创建,同时打上标签值“Beijing.Chaoyang", 2。 关于自动建表的详细语法请参见 [插入记录时自动建表](https://www.taosdata.com/cn/documentation/taos-sql#auto_create_table) 章节。 ## 多列模型 vs 单列模型 TDengine支持多列模型,只要物理量是一个数据采集点同时采集的(时间戳一致),这些量就可以作为不同列放在一张超级表里。但还有一种极限的设计,单列模型,每个采集的物理量都单独建表,因此每种类型的物理量都单独建立一超级表。比如电流、电压、相位,就建三张超级表。 TDengine建议尽可能采用多列模型,因为插入效率以及存储效率更高。但对于有些场景,一个采集点的采集量的种类经常变化,这个时候,如果采用多列模型,就需要频繁修改超级表的结构定义,让应用变的复杂,这个时候,采用单列模型会显得简单。