/* * Copyright (c) 2019 TAOS Data, Inc. * * This program is free software: you can use, redistribute, and/or modify * it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include "index_fst.h" #include "tcoding.h" #include "tchecksum.h" static void fstPackDeltaIn(FstCountingWriter *wrt, CompiledAddr nodeAddr, CompiledAddr transAddr, uint8_t nBytes) { CompiledAddr deltaAddr = (transAddr == EMPTY_ADDRESS) ? EMPTY_ADDRESS : nodeAddr - transAddr; fstCountingWriterPackUintIn(wrt, deltaAddr, nBytes); } static uint8_t fstPackDetla(FstCountingWriter *wrt, CompiledAddr nodeAddr, CompiledAddr transAddr) { uint8_t nBytes = packDeltaSize(nodeAddr, transAddr); fstPackDeltaIn(wrt, nodeAddr, transAddr, nBytes); return nBytes; } FstUnFinishedNodes *fstUnFinishedNodesCreate() { FstUnFinishedNodes *nodes = malloc(sizeof(FstUnFinishedNodes)); if (nodes == NULL) { return NULL; } nodes->stack = (SArray *)taosArrayInit(64, sizeof(FstBuilderNodeUnfinished)); fstUnFinishedNodesPushEmpty(nodes, false); return nodes; } void unFinishedNodeDestroyElem(void* elem) { FstBuilderNodeUnfinished *b = (FstBuilderNodeUnfinished*)elem; fstBuilderNodeDestroy(b->node); free(b->last); } void fstUnFinishedNodesDestroy(FstUnFinishedNodes *nodes) { if (nodes == NULL) { return; } taosArrayDestroyEx(nodes->stack, unFinishedNodeDestroyElem); free(nodes); } void fstUnFinishedNodesPushEmpty(FstUnFinishedNodes *nodes, bool isFinal) { FstBuilderNode *node = malloc(sizeof(FstBuilderNode)); node->isFinal = isFinal; node->finalOutput = 0; node->trans = NULL; FstBuilderNodeUnfinished un = {.node = node, .last = NULL}; taosArrayPush(nodes->stack, &un); } FstBuilderNode *fstUnFinishedNodesPopRoot(FstUnFinishedNodes *nodes) { assert(taosArrayGetSize(nodes->stack) == 1); FstBuilderNodeUnfinished *un = taosArrayPop(nodes->stack); assert(un->last == NULL); return un->node; } FstBuilderNode *fstUnFinishedNodesPopFreeze(FstUnFinishedNodes *nodes, CompiledAddr addr) { FstBuilderNodeUnfinished *un = taosArrayPop(nodes->stack); fstBuilderNodeUnfinishedLastCompiled(un, addr); free(un->last); // TODO add func FstLastTransitionFree() return un->node; } FstBuilderNode *fstUnFinishedNodesPopEmpty(FstUnFinishedNodes *nodes) { FstBuilderNodeUnfinished *un = taosArrayPop(nodes->stack); assert(un->last == NULL); return un->node; } void fstUnFinishedNodesSetRootOutput(FstUnFinishedNodes *nodes, Output out) { FstBuilderNodeUnfinished *un = taosArrayGet(nodes->stack, 0); un->node->isFinal = true; un->node->finalOutput = out; //un->node->trans = NULL; } void fstUnFinishedNodesTopLastFreeze(FstUnFinishedNodes *nodes, CompiledAddr addr) { size_t sz = taosArrayGetSize(nodes->stack) - 1; FstBuilderNodeUnfinished *un = taosArrayGet(nodes->stack, sz); fstBuilderNodeUnfinishedLastCompiled(un, addr); } void fstUnFinishedNodesAddSuffix(FstUnFinishedNodes *nodes, FstSlice bs, Output out) { FstSlice *s = &bs; if (fstSliceEmpty(s)) { return; } size_t sz = taosArrayGetSize(nodes->stack) - 1; FstBuilderNodeUnfinished *un = taosArrayGet(nodes->stack, sz); assert(un->last == NULL); //FstLastTransition *trn = malloc(sizeof(FstLastTransition)); //trn->inp = s->data[s->start]; //trn->out = out; int32_t len = 0; uint8_t *data = fstSliceData(s, &len); un->last = fstLastTransitionCreate(data[0], out); for (uint64_t i = 0; i < len; i++) { FstBuilderNode *n = malloc(sizeof(FstBuilderNode)); n->isFinal = false; n->finalOutput = 0; n->trans = NULL; //FstLastTransition *trn = malloc(sizeof(FstLastTransition)); //trn->inp = s->data[i]; //trn->out = out; FstLastTransition *trn = fstLastTransitionCreate(data[i], out); FstBuilderNodeUnfinished un = {.node = n, .last = trn}; taosArrayPush(nodes->stack, &un); } fstUnFinishedNodesPushEmpty(nodes, true); } uint64_t fstUnFinishedNodesFindCommPrefix(FstUnFinishedNodes *node, FstSlice bs) { FstSlice *s = &bs; size_t ssz = taosArrayGetSize(node->stack); // stack size uint64_t count = 0; int32_t lsz; // data len uint8_t *data = fstSliceData(s, &lsz); for (size_t i = 0; i < ssz && i < lsz; i++) { FstBuilderNodeUnfinished *un = taosArrayGet(node->stack, i); if (un->last->inp == data[i]) { count++; } else { break; } } return count; } uint64_t fstUnFinishedNodesFindCommPrefixAndSetOutput(FstUnFinishedNodes *node, FstSlice bs, Output in, Output *out) { FstSlice *s = &bs; size_t lsz = (size_t)(s->end - s->start + 1); // data len size_t ssz = taosArrayGetSize(node->stack); // stack size uint64_t i = 0; for (i = 0; i < lsz && i < ssz; i++) { FstBuilderNodeUnfinished *un = taosArrayGet(node->stack, i); FstLastTransition *t = un->last; uint64_t addPrefix = 0; uint8_t *data = fstSliceData(s, NULL); if (t && t->inp == data[i]) { uint64_t commPrefix = MIN(t->out, *out); uint64_t tAddPrefix = t->out - commPrefix; (*out) = (*out) - commPrefix; t->out = commPrefix; addPrefix = tAddPrefix; } else { break; } if (addPrefix != 0) { fstBuilderNodeUnfinishedAddOutputPrefix(un, addPrefix); } } return i; } FstState fstStateCreateFrom(FstSlice* slice, CompiledAddr addr) { FstState fs = {.state = EmptyFinal, .val = 0}; if (addr == EMPTY_ADDRESS) { return fs; } uint8_t *data = fstSliceData(slice, NULL); uint8_t v = data[addr]; uint8_t t = (v & 0b11000000) >> 6; if (t == 0b11) { fs.state = OneTransNext; } else if (t == 0b10) { fs.state = OneTrans; } else { fs.state = AnyTrans; } fs.val = v; return fs; } static FstState fstStateDict[] = { {.state = OneTransNext, .val = 0b11000000}, {.state = OneTrans, .val = 0b10000000}, {.state = AnyTrans, .val = 0b00000000}, {.state = EmptyFinal, .val = 0b00000000} }; // debug static const char *fstStateStr[] = {"ONE_TRANS_NEXT", "ONE_TRANS", "ANY_TRANS", "EMPTY_FINAL"}; FstState fstStateCreate(State state){ uint8_t idx = (uint8_t)state; return fstStateDict[idx]; } //compile void fstStateCompileForOneTransNext(FstCountingWriter *w, CompiledAddr addr, uint8_t inp) { FstState s = fstStateCreate(OneTransNext); fstStateSetCommInput(&s, inp); bool null = false; uint8_t v = fstStateCommInput(&s, &null); if (null) { // w->write_all(&[inp]) fstCountingWriterWrite(w, &inp, 1); } fstCountingWriterWrite(w, &(s.val), 1); // w->write_all(&[s.val]) return; } void fstStateCompileForOneTrans(FstCountingWriter *w, CompiledAddr addr, FstTransition* trn) { Output out = trn->out; uint8_t outPackSize = (out == 0 ? 0 : fstCountingWriterPackUint(w, out)); uint8_t transPackSize = fstPackDetla(w, addr, trn->addr); PackSizes packSizes = 0; FST_SET_OUTPUT_PACK_SIZE(packSizes, outPackSize); FST_SET_TRANSITION_PACK_SIZE(packSizes, transPackSize); fstCountingWriterWrite(w, (char *)&packSizes, sizeof(packSizes)); FstState st = fstStateCreate(OneTrans); fstStateSetCommInput(&st, trn->inp); bool null = false; uint8_t inp = fstStateCommInput(&st, &null); if (null == true) { fstCountingWriterWrite(w, (char *)&trn->inp, sizeof(trn->inp)); } fstCountingWriterWrite(w, (char *)(&(st.val)), sizeof(st.val)); return ; } void fstStateCompileForAnyTrans(FstCountingWriter *w, CompiledAddr addr, FstBuilderNode *node) { size_t sz = taosArrayGetSize(node->trans); assert(sz <= 256); uint8_t tSize = 0; uint8_t oSize = packSize(node->finalOutput) ; // finalOutput.is_zero() bool anyOuts = (node->finalOutput != 0) ; for (size_t i = 0; i < sz; i++) { FstTransition *t = taosArrayGet(node->trans, i); tSize = MAX(tSize, packDeltaSize(addr, t->addr)); oSize = MAX(oSize, packSize(t->out)); anyOuts = anyOuts || (t->out != 0); } PackSizes packSizes = 0; if (anyOuts) { FST_SET_OUTPUT_PACK_SIZE(packSizes, oSize); } else { FST_SET_OUTPUT_PACK_SIZE(packSizes, 0); } FST_SET_TRANSITION_PACK_SIZE(packSizes, tSize); FstState st = fstStateCreate(AnyTrans); fstStateSetFinalState(&st, node->isFinal); fstStateSetStateNtrans(&st, (uint8_t)sz); if (anyOuts) { if (FST_BUILDER_NODE_IS_FINAL(node)) { fstCountingWriterPackUintIn(w, node->finalOutput, oSize); } for (size_t i = 0; i < sz; i++) { FstTransition *t = taosArrayGet(node->trans, i); fstCountingWriterPackUintIn(w, t->out, oSize); } } for (size_t i = 0; i < sz; i++) { FstTransition *t = taosArrayGet(node->trans, i); fstPackDeltaIn(w, addr, t->addr, tSize); } for (size_t i = 0; i < sz; i++) { FstTransition *t = taosArrayGet(node->trans, i); fstCountingWriterWrite(w, (char *)&t->inp, 1); //fstPackDeltaIn(w, addr, t->addr, tSize); } if (sz > TRANS_INDEX_THRESHOLD) { // A value of 255 indicates that no transition exists for the byte // at that index. (Except when there are 256 transitions.) Namely, // any value greater than or equal to the number of transitions in // this node indicates an absent transition. uint8_t *index = (uint8_t *)malloc(sizeof(uint8_t) * 256); for (uint8_t i = 0; i < 256; i++) { index[i] = 255; } for (size_t i = 0; i < sz; i++) { FstTransition *t = taosArrayGet(node->trans, i); index[t->inp] = i; fstCountingWriterWrite(w, (char *)index, sizeof(index)); //fstPackDeltaIn(w, addr, t->addr, tSize); } free(index); } fstCountingWriterWrite(w, (char *)&packSizes, 1); bool null = false; fstStateStateNtrans(&st, &null); if (null == true) { // 256 can't be represented in a u8, so we abuse the fact that // the # of transitions can never be 1 here, since 1 is always // encoded in the state byte. uint8_t v = 1; if (sz == 256) { fstCountingWriterWrite(w, (char *)&v, 1); } else { fstCountingWriterWrite(w, (char *)&sz, 1); } } fstCountingWriterWrite(w, (char *)(&(st.val)), 1); return; } // set_comm_input void fstStateSetCommInput(FstState* s, uint8_t inp) { assert(s->state == OneTransNext || s->state == OneTrans); uint8_t val; COMMON_INDEX(inp, 0x111111, val); s->val = (s->val & fstStateDict[s->state].val) | val; } // comm_input uint8_t fstStateCommInput(FstState* s, bool *null) { assert(s->state == OneTransNext || s->state == OneTrans); uint8_t v = s->val & 0b00111111; if (v == 0) { *null = true; return v; } //v = 0 indicate that common_input is None return v == 0 ? 0 : COMMON_INPUT(v); } // input_len uint64_t fstStateInputLen(FstState* s) { assert(s->state == OneTransNext || s->state == OneTrans); bool null = false; fstStateCommInput(s, &null); return null ? 1 : 0 ; } // end_addr uint64_t fstStateEndAddrForOneTransNext(FstState* s, FstSlice *data) { assert(s->state == OneTransNext); return FST_SLICE_LEN(data) - 1 - fstStateInputLen(s); } uint64_t fstStateEndAddrForOneTrans(FstState *s, FstSlice *data, PackSizes sizes) { assert(s->state == OneTrans); return FST_SLICE_LEN(data) - 1 - fstStateInputLen(s) - 1 // pack size - FST_GET_TRANSITION_PACK_SIZE(sizes) - FST_GET_OUTPUT_PACK_SIZE(sizes); } uint64_t fstStateEndAddrForAnyTrans(FstState *state, uint64_t version, FstSlice *date, PackSizes sizes, uint64_t nTrans) { uint8_t oSizes = FST_GET_OUTPUT_PACK_SIZE(sizes); uint8_t finalOsize = !fstStateIsFinalState(state) ? 0 : oSizes; return FST_SLICE_LEN(date) - 1 - fstStateNtransLen(state) - 1 //pack size - fstStateTotalTransSize(state, version, sizes, nTrans) - nTrans * oSizes // output values - finalOsize; // final output } // input uint8_t fstStateInput(FstState *s, FstNode *node) { assert(s->state == OneTransNext || s->state == OneTrans); FstSlice *slice = &node->data; bool null = false; uint8_t inp = fstStateCommInput(s, &null); uint8_t *data = fstSliceData(slice, NULL); return null == false ? inp : data[-1]; } uint8_t fstStateInputForAnyTrans(FstState *s, FstNode *node, uint64_t i) { assert(s->state == AnyTrans); FstSlice *slice = &node->data; uint64_t at = node->start - fstStateNtransLen(s) - 1 // pack size - fstStateTransIndexSize(s, node->version, node->nTrans) - i - 1; // the output size uint8_t *data = fstSliceData(slice, NULL); return data[at]; } // trans_addr CompiledAddr fstStateTransAddr(FstState *s, FstNode *node) { assert(s->state == OneTransNext || s->state == OneTrans); FstSlice *slice = &node->data; if (s->state == OneTransNext) { return (CompiledAddr)(node->end); } else { PackSizes sizes = node->sizes; uint8_t tSizes = FST_GET_TRANSITION_PACK_SIZE(sizes); uint64_t i = node->start - fstStateInputLen(s) - 1 // PackSizes - tSizes; // refactor error logic uint8_t *data = fstSliceData(slice, NULL); return unpackDelta(data +i, tSizes, node->end); } } CompiledAddr fstStateTransAddrForAnyTrans(FstState *s, FstNode *node, uint64_t i) { assert(s->state == AnyTrans); FstSlice *slice = &node->data; uint8_t tSizes = FST_GET_TRANSITION_PACK_SIZE(node->sizes); uint64_t at = node->start - fstStateNtransLen(s) - 1 - fstStateTransIndexSize(s, node->version, node->nTrans) - node->nTrans - (i * tSizes) - tSizes; uint8_t *data = fstSliceData(slice, NULL); return unpackDelta(data + at, tSizes, node->end); } // sizes PackSizes fstStateSizes(FstState *s, FstSlice *slice) { assert(s->state == OneTrans || s->state == AnyTrans) ; uint64_t i; if (s->state == OneTrans) { i = FST_SLICE_LEN(slice) - 1 - fstStateInputLen(s) - 1; } else { i = FST_SLICE_LEN(slice) - 1 - fstStateNtransLen(s) - 1; } uint8_t *data = fstSliceData(slice, NULL); return (PackSizes)(*(data +i)); } // Output Output fstStateOutput(FstState *s, FstNode *node) { assert(s->state == OneTrans); uint8_t oSizes = FST_GET_OUTPUT_PACK_SIZE(node->sizes); if (oSizes == 0) { return 0; } FstSlice *slice = &node->data; uint8_t tSizes = FST_GET_TRANSITION_PACK_SIZE(node->sizes); uint64_t i = node->start - fstStateInputLen(s); - 1 - tSizes - oSizes; uint8_t *data = fstSliceData(slice, NULL); return unpackUint64(data + i, oSizes); } Output fstStateOutputForAnyTrans(FstState *s, FstNode *node, uint64_t i) { assert(s->state == AnyTrans); uint8_t oSizes = FST_GET_OUTPUT_PACK_SIZE(node->sizes); if (oSizes == 0) { return 0; } FstSlice *slice = &node->data; uint64_t at = node->start - fstStateNtransLen(s) - 1 // pack size - fstStateTotalTransSize(s, node->version, node->sizes, node->nTrans) - (i * oSizes) - oSizes; uint8_t *data = fstSliceData(slice, NULL); return unpackUint64(data + at, oSizes); } // anyTrans specify function void fstStateSetFinalState(FstState *s, bool yes) { assert(s->state == AnyTrans); if (yes) { s->val |= 0b01000000; } return; } bool fstStateIsFinalState(FstState *s) { assert(s->state == AnyTrans); return (s->val & 0b01000000) == 0b01000000; } void fstStateSetStateNtrans(FstState *s, uint8_t n) { assert(s->state == AnyTrans); if (n <= 0b00111111) { s->val = (s->val & 0b11000000) | n; } return; } // state_ntrans uint8_t fstStateStateNtrans(FstState *s, bool *null) { assert(s->state == AnyTrans); *null = false; uint8_t n = s->val & 0b00111111; if (n == 0) { *null = true; // None } return n; } uint64_t fstStateTotalTransSize(FstState *s, uint64_t version, PackSizes sizes, uint64_t nTrans) { assert(s->state == AnyTrans); uint64_t idxSize = fstStateTransIndexSize(s, version, nTrans); return nTrans + (nTrans * FST_GET_TRANSITION_PACK_SIZE(sizes)) + idxSize; } uint64_t fstStateTransIndexSize(FstState *s, uint64_t version, uint64_t nTrans) { assert(s->state == AnyTrans); return (version >= 2 &&nTrans > TRANS_INDEX_THRESHOLD) ? 256 : 0; } uint64_t fstStateNtransLen(FstState *s) { assert(s->state == AnyTrans); bool null = false; fstStateStateNtrans(s, &null); return null == true ? 1 : 0; } uint64_t fstStateNtrans(FstState *s, FstSlice *slice) { bool null = false; uint8_t n = fstStateStateNtrans(s, &null); if (null != true) { return n; } int32_t len; uint8_t *data = fstSliceData(slice, &len); n = data[len - 2]; //n = data[slice->end - 1]; // data[data.len() - 2] return n == 1 ? 256: n; // // "1" is never a normal legal value here, because if there, // is only 1 transition, then it is encoded in the state byte } Output fstStateFinalOutput(FstState *s, uint64_t version, FstSlice *slice, PackSizes sizes, uint64_t nTrans) { uint8_t oSizes = FST_GET_OUTPUT_PACK_SIZE(sizes); if (oSizes == 0 || !fstStateIsFinalState(s)) { return 0; } uint64_t at = FST_SLICE_LEN(slice) - 1 - fstStateNtransLen(s) - fstStateTotalTransSize(s, version, sizes, nTrans) - (nTrans * oSizes) - oSizes; uint8_t *data = fstSliceData(slice, NULL); return unpackUint64(data + at, (uint8_t)oSizes); } uint64_t fstStateFindInput(FstState *s, FstNode *node, uint8_t b, bool *null) { assert(s->state == AnyTrans); FstSlice *slice = &node->data; if (node->version >= 2 && node->nTrans > TRANS_INDEX_THRESHOLD) { uint64_t at = node->start - fstStateNtransLen(s) - 1 // pack size - fstStateTransIndexSize(s, node->version, node->nTrans); int32_t dlen = 0; uint8_t *data = fstSliceData(slice, &dlen); uint64_t i = data[at + b]; //uint64_t i = slice->data[slice->start + at + b]; if (i >= node->nTrans) { *null = true; } return i; } else { uint64_t start = node->start - fstStateNtransLen(s) - 1 // pack size - node->nTrans; uint64_t end = start + node->nTrans; uint64_t len = end - start; int32_t dlen = 0; uint8_t *data = fstSliceData(slice, &dlen); for(int i = 0; i < len; i++) { //uint8_t v = slice->data[slice->start + i]; ////slice->data[slice->start + i]; uint8_t v = data[i]; if (v == b) { return node->nTrans - i - 1; // bug } } } } // fst node function FstNode *fstNodeCreate(int64_t version, CompiledAddr addr, FstSlice *slice) { FstNode *n = (FstNode *)malloc(sizeof(FstNode)); if (n == NULL) { return NULL; } FstState st = fstStateCreateFrom(slice, addr); if (st.state == EmptyFinal) { n->data = fstSliceCreate(NULL, 0); n->version = version; n->state = st; n->start = EMPTY_ADDRESS; n->end = EMPTY_ADDRESS; n->isFinal = true; n->nTrans = 0; n->sizes = 0; n->finalOutput = 0; } else if (st.state == OneTransNext) { n->data = fstSliceCopy(slice, 0, addr); n->version = version; n->state = st; n->start = addr; n->end = fstStateEndAddrForOneTransNext(&st, slice); //? s.end_addr(data); n->isFinal = false; n->sizes = 0; n->nTrans = 1; n->finalOutput = 0; } else if (st.state == OneTrans) { FstSlice data = fstSliceCopy(slice, 0, addr); PackSizes sz = fstStateSizes(&st, &data); n->data = fstSliceCopy(slice, 0, addr); n->version = version; n->state = st; n->start = addr; n->end = fstStateEndAddrForOneTrans(&st, slice, sz); // s.end_addr(data, sz); n->isFinal = false; n->nTrans = 1; n->sizes = sz; n->finalOutput = 0; } else { uint64_t sz = fstStateSizes(&st, slice); // s.sizes(data) uint32_t nTrans = fstStateNtrans(&st, slice); // s.ntrans(data) n->data = *slice; n->version = version; n->state = st; n->start = addr; n->end = fstStateEndAddrForAnyTrans(&st, version, slice, sz, nTrans); // s.end_addr(version, data, sz, ntrans); n->isFinal = fstStateIsFinalState(&st); // s.is_final_state(); n->nTrans = nTrans; n->sizes = sz; n->finalOutput = fstStateFinalOutput(&st, version, slice, sz, nTrans); // s.final_output(version, data, sz, ntrans); } return n; } // debug state transition static const char *fstNodeState(FstNode *node) { FstState *st = &node->state; return fstStateStr[st->state]; } void fstNodeDestroy(FstNode *node) { fstSliceDestroy(&node->data); free(node); } FstTransitions* fstNodeTransitions(FstNode *node) { FstTransitions *t = malloc(sizeof(FstTransitions)); if (NULL == t) { return NULL; } FstRange range = {.start = 0, .end = FST_NODE_LEN(node)}; t->range = range; t->node = node; return t; } // Returns the transition at index `i`. bool fstNodeGetTransitionAt(FstNode *node, uint64_t i, FstTransition *trn) { bool s = true; FstState *st = &node->state; if (st->state == OneTransNext) { trn->inp = fstStateInput(st, node); trn->out = 0; trn->addr = fstStateTransAddr(st, node); } else if (st->state == OneTrans) { trn->inp = fstStateInput(st, node); trn->out = fstStateOutput(st, node); trn->addr = fstStateTransAddr(st, node); } else if (st->state == AnyTrans) { trn->inp = fstStateInputForAnyTrans(st, node, i); trn->out = fstStateOutputForAnyTrans(st, node, i); trn->addr = fstStateTransAddrForAnyTrans(st, node, i); } else { s = false; } return s; } // Returns the transition address of the `i`th transition bool fstNodeGetTransitionAddrAt(FstNode *node, uint64_t i, CompiledAddr *res) { bool s = true; FstState *st = &node->state; if (st->state == OneTransNext) { assert(i == 0); fstStateTransAddr(st, node); } else if (st->state == OneTrans) { assert(i == 0); fstStateTransAddr(st, node); } else if (st->state == AnyTrans) { fstStateTransAddrForAnyTrans(st, node, i); } else if (FST_STATE_EMPTY_FINAL(node)){ s = false; } else { assert(0); } return s; } // Finds the `i`th transition corresponding to the given input byte. // If no transition for this byte exists, then `false` is returned. bool fstNodeFindInput(FstNode *node, uint8_t b, uint64_t *res) { bool s = true; FstState *st = &node->state; if (st->state == OneTransNext) { if (fstStateInput(st,node) == b) { *res = 0; } else { s = false; } } else if (st->state == OneTrans) { if (fstStateInput(st, node) == b) { *res = 0 ;} else { s = false; } } else if (st->state == AnyTrans) { bool null = false; uint64_t out = fstStateFindInput(st, node, b, &null); if (null == false) { *res = out; } else { s = false;} } return s; } bool fstNodeCompile(FstNode *node, void *w, CompiledAddr lastAddr, CompiledAddr addr, FstBuilderNode *builderNode) { size_t sz = taosArrayGetSize(builderNode->trans); assert(sz < 256); if (sz == 0 && builderNode->isFinal && builderNode->finalOutput == 0) { return true; } else if (sz != 1 || builderNode->isFinal) { fstStateCompileForAnyTrans(w, addr, builderNode); // AnyTrans->Compile(w, addr, node); } else { FstTransition *tran = taosArrayGet(builderNode->trans, 0); if (tran->addr == lastAddr && tran->out == 0) { fstStateCompileForOneTransNext(w, addr, tran->inp); //OneTransNext::compile(w, lastAddr, tran->inp); return true; } else { fstStateCompileForOneTrans(w, addr, tran); //OneTrans::Compile(w, lastAddr, *tran); return true; } } return true; } bool fstBuilderNodeCompileTo(FstBuilderNode *b, FstCountingWriter *wrt, CompiledAddr lastAddr, CompiledAddr startAddr) { return fstNodeCompile(NULL, wrt, lastAddr, startAddr, b); } FstBuilder *fstBuilderCreate(void *w, FstType ty) { FstBuilder *b = malloc(sizeof(FstBuilder)); if (NULL == b) { return b; } b->wrt = fstCountingWriterCreate(w); b->unfinished = fstUnFinishedNodesCreate(); b->registry = fstRegistryCreate(10000, 2) ; b->last = fstSliceCreate(NULL, 0); b->lastAddr = NONE_ADDRESS; b->len = 0; return b; } void fstBuilderDestroy(FstBuilder *b) { if (b == NULL) { return; } fstCountingWriterDestroy(b->wrt); fstUnFinishedNodesDestroy(b->unfinished); fstRegistryDestroy(b->registry); free(b); } bool fstBuilderInsert(FstBuilder *b, FstSlice bs, Output in) { OrderType t = fstBuilderCheckLastKey(b, bs, true); if (t == Ordered) { // add log info fstBuilderInsertOutput(b, bs, in); return true; } return false; } void fstBuilderInsertOutput(FstBuilder *b, FstSlice bs, Output in) { FstSlice *s = &bs; if (fstSliceEmpty(s)) { b->len = 1; fstUnFinishedNodesSetRootOutput(b->unfinished, in); return; } Output out; //if (in != 0) { //if let Some(in) = in // prefixLen = fstUnFinishedNodesFindCommPrefixAndSetOutput(b->unfinished, bs, in, &out); //} else { // prefixLen = fstUnFinishedNodesFindCommPrefix(b->unfinished, bs); // out = 0; //} uint64_t prefixLen = fstUnFinishedNodesFindCommPrefixAndSetOutput(b->unfinished, bs, in, &out); if (prefixLen == FST_SLICE_LEN(s)) { assert(out == 0); return; } b->len += 1; fstBuilderCompileFrom(b, prefixLen); FstSlice sub = fstSliceCopy(s, prefixLen, s->end); fstUnFinishedNodesAddSuffix(b->unfinished, sub, out); fstSliceDestroy(&sub); return; } OrderType fstBuilderCheckLastKey(FstBuilder *b, FstSlice bs, bool ckDup) { FstSlice *input = &bs; if (fstSliceEmpty(&b->last)) { // deep copy or not b->last = fstSliceCopy(&bs, input->start, input->end); } else { int comp = fstSliceCompare(&b->last, &bs); if (comp == 0 && ckDup) { return DuplicateKey; } else if (comp == 1) { return OutOfOrdered; } // deep copy or not b->last = fstSliceCopy(&bs, input->start, input->end); } return Ordered; } void fstBuilderCompileFrom(FstBuilder *b, uint64_t istate) { CompiledAddr addr = NONE_ADDRESS; while (istate + 1 < FST_UNFINISHED_NODES_LEN(b->unfinished)) { FstBuilderNode *n = NULL; if (addr == NONE_ADDRESS) { n = fstUnFinishedNodesPopEmpty(b->unfinished); } else { n = fstUnFinishedNodesPopFreeze(b->unfinished, addr); } addr = fstBuilderCompile(b, n); assert(addr != NONE_ADDRESS); fstBuilderNodeDestroy(n); } fstUnFinishedNodesTopLastFreeze(b->unfinished, addr); return; } CompiledAddr fstBuilderCompile(FstBuilder *b, FstBuilderNode *bn) { if (FST_BUILDER_NODE_IS_FINAL(bn) && FST_BUILDER_NODE_TRANS_ISEMPTY(bn) && FST_BUILDER_NODE_FINALOUTPUT_ISZERO(bn)) { return EMPTY_ADDRESS; } FstRegistryEntry *entry = fstRegistryGetEntry(b->registry, bn); if (entry->state == FOUND) { CompiledAddr ret = entry->addr; fstRegistryEntryDestroy(entry); return ret; } CompiledAddr startAddr = (CompiledAddr)(FST_WRITER_COUNT(b->wrt)); fstBuilderNodeCompileTo(bn, b->wrt, b->lastAddr, startAddr); b->lastAddr = (CompiledAddr)(FST_WRITER_COUNT(b->wrt) - 1); if (entry->state == NOTFOUND) { FST_REGISTRY_CELL_INSERT(entry->cell, b->lastAddr); } fstRegistryEntryDestroy(entry); return b->lastAddr; } void* fstBuilderInsertInner(FstBuilder *b) { fstBuilderCompileFrom(b, 0); FstBuilderNode *rootNode = fstUnFinishedNodesPopRoot(b->unfinished); CompiledAddr rootAddr = fstBuilderCompile(b, rootNode); uint8_t buf64[8] = {0}; taosEncodeFixedU64((void **)&buf64, b->len); fstCountingWriterWrite(b->wrt, buf64, sizeof(buf64)); taosEncodeFixedU64((void **)&buf64, rootAddr); fstCountingWriterWrite(b->wrt, buf64, sizeof(buf64)); uint8_t buf32[4] = {0}; uint32_t sum = fstCountingWriterMaskedCheckSum(b->wrt); taosEncodeFixedU32((void **)&buf32, sum); fstCountingWriterWrite(b->wrt, buf32, sizeof(buf32)); fstCountingWriterFlush(b->wrt); return b->wrt; } void fstBuilderFinish(FstBuilder *b) { fstBuilderInsertInner(b); } FstSlice fstNodeAsSlice(FstNode *node) { FstSlice *slice = &node->data; FstSlice s = fstSliceCopy(slice, slice->end, FST_SLICE_LEN(slice) - 1); return s; } FstLastTransition *fstLastTransitionCreate(uint8_t inp, Output out) { FstLastTransition *trn = malloc(sizeof(FstLastTransition)); if (trn == NULL) { return NULL; } trn->inp = inp; trn->out = out; return trn; } void fstLastTransitionDestroy(FstLastTransition *trn) { free(trn); } void fstBuilderNodeUnfinishedLastCompiled(FstBuilderNodeUnfinished *unNode, CompiledAddr addr) { FstLastTransition *trn = unNode->last; if (trn == NULL) { return; } FstTransition t = {.inp = trn->inp, .out = trn->out, .addr = addr}; taosArrayPush(unNode->node->trans, &t); return; } void fstBuilderNodeUnfinishedAddOutputPrefix(FstBuilderNodeUnfinished *unNode, Output out) { if (FST_BUILDER_NODE_IS_FINAL(unNode->node)) { unNode->node->finalOutput += out; } size_t sz = taosArrayGetSize(unNode->node->trans); for (size_t i = 0; i < sz; i++) { FstTransition *trn = taosArrayGet(unNode->node->trans, i); trn->out += out; } if (unNode->last) { unNode->last->out += out; } return; } Fst* fstCreate(FstSlice *slice) { int32_t slen; char *buf = fstSliceData(slice, &slen); if (slen < 36) { return NULL; } uint64_t len = slen; uint64_t skip = 0; uint64_t version; taosDecodeFixedU64(buf, &version); skip += sizeof(version); if (version == 0 || version > VERSION) { return NULL; } uint64_t type; taosDecodeFixedU64(buf + skip, &type); skip += sizeof(type); uint32_t checkSum = 0; len -= sizeof(checkSum); taosDecodeFixedU32(buf + len, &checkSum); CompiledAddr rootAddr; len -= sizeof(rootAddr); taosDecodeFixedU64(buf + len, &rootAddr); uint64_t fstLen; len -= sizeof(fstLen); taosDecodeFixedU64(buf + len, &fstLen); //TODO(validat root addr) // Fst *fst= (Fst *)calloc(1, sizeof(Fst)); if (fst == NULL) { return NULL; } fst->meta = (FstMeta *)malloc(sizeof(FstMeta)); if (NULL == fst->meta) { goto FST_CREAT_FAILED; } fst->meta->version = version; fst->meta->rootAddr = rootAddr; fst->meta->ty = type; fst->meta->len = fstLen; fst->meta->checkSum = checkSum; fst->data = slice; return fst; FST_CREAT_FAILED: free(fst->meta); free(fst); } void fstDestroy(Fst *fst) { if (fst) { free(fst->meta); fstNodeDestroy(fst->root); } free(fst); } bool fstGet(Fst *fst, FstSlice *b, Output *out) { FstNode *root = fstGetRoot(fst); Output tOut = 0; int32_t len; uint8_t *data = fstSliceData(b, &len); for (uint32_t i = 0; i < len; i++) { uint8_t inp = data[i]; Output res = 0; bool null = fstNodeFindInput(root, inp, &res); if (null) { return false; } FstTransition trn; fstNodeGetTransitionAt(root, res, &trn); tOut += trn.out; root = fstGetNode(fst, trn.addr); } if (!FST_NODE_IS_FINAL(root)) { return false; } else { tOut = tOut + FST_NODE_FINAL_OUTPUT(root); } *out = tOut; return false; } FstNode *fstGetRoot(Fst *fst) { if (fst->root != NULL) { return fst->root; } CompiledAddr rAddr = fstGetRootAddr(fst); fst->root = fstGetNode(fst, rAddr); return fst->root; } FstNode* fstGetNode(Fst *fst, CompiledAddr addr) { return fstNodeCreate(fst->meta->version, addr, fst->data); } FstType fstGetType(Fst *fst) { return fst->meta->ty; } CompiledAddr fstGetRootAddr(Fst *fst) { return fst->meta->rootAddr; } Output fstEmptyFinalOutput(Fst *fst, bool *null) { Output res = 0; FstNode *node = fst->root; if (FST_NODE_IS_FINAL(node)) { *null = false; res = FST_NODE_FINAL_OUTPUT(node); } else { *null = true; } return res; } bool fstVerify(Fst *fst) { uint32_t checkSum = fst->meta->checkSum; int32_t len; uint8_t *data = fstSliceData(fst->data, &len); TSCKSUM initSum = 0; if (!taosCheckChecksumWhole(data, len)) { return false; } return true; } // data bound function FstBoundWithData* fstBoundStateCreate(FstBound type, FstSlice *data) { FstBoundWithData *b = calloc(1, sizeof(FstBoundWithData)); if (b == NULL) { return NULL; } if (data != NULL) { b->data = fstSliceCopy(data, data->start, data->end); } else { b->data = fstSliceCreate(NULL, 0); } b->type = type; return b; } bool fstBoundWithDataExceededBy(FstBoundWithData *bound, FstSlice *slice) { int comp = fstSliceCompare(slice, &bound->data); if (bound->type == Included) { return comp > 0 ? true : false; } else if (bound->type == Excluded) { return comp >= 0 ? true : false; } else { return true; } } bool fstBoundWithDataIsEmpty(FstBoundWithData *bound) { if (bound->type == Unbounded) { return true; } else { return fstSliceEmpty(&bound->data); } } bool fstBoundWithDataIsIncluded(FstBoundWithData *bound) { return bound->type == Included ? true : false; } void fstBoundDestroy(FstBoundWithData *bound) { free(bound); } StreamWithState *streamWithStateCreate(Fst *fst, Automation *automation, FstBoundWithData *min, FstBoundWithData *max) { StreamWithState *sws = calloc(1, sizeof(StreamWithState)); if (sws == NULL) { return NULL; } sws->fst = fst; sws->aut = automation; sws->inp = (SArray *)taosArrayInit(256, sizeof(uint8_t)); sws->emptyOutput.null = false; sws->emptyOutput.out = 0; sws->stack = (SArray *)taosArrayInit(256, sizeof(StreamState)); sws->endAt = max; streamWithStateSeekMin(sws, min); return sws; } void streamWithStateDestroy(StreamWithState *sws) { if (sws == NULL) { return; } taosArrayDestroy(sws->inp); taosArrayDestroyEx(sws->stack, streamStateDestroy); free(sws); } bool streamWithStateSeekMin(StreamWithState *sws, FstBoundWithData *min) { if (fstBoundWithDataIsEmpty(min)) { if (fstBoundWithDataIsIncluded(min)) { sws->emptyOutput.out = fstEmptyFinalOutput(sws->fst, &(sws->emptyOutput.null)); } StreamState s = {.node = fstGetRoot(sws->fst), .trans = 0, .out = {.null = false, .out = 0}, .autState = sws->aut->start()}; // auto.start callback taosArrayPush(sws->stack, &s); return true; } FstSlice *key = NULL; bool inclusize = false;; if (min->type == Included) { key = &min->data; inclusize = true; } else if (min->type == Excluded) { key = &min->data; } else { return false; } FstNode *node = fstGetRoot(sws->fst); Output out = 0; void* autState = sws->aut->start(); int32_t len; uint8_t *data = fstSliceData(key, &len); for (uint32_t i = 0; i < len; i++) { uint8_t b = data[i]; uint64_t res = 0; bool null = fstNodeFindInput(node, b, &res); if (null == false) { FstTransition trn; fstNodeGetTransitionAt(node, res, &trn); void *preState = autState; autState = sws->aut->accept(preState, b); taosArrayPush(sws->inp, &b); StreamState s = {.node = node, .trans = res + 1, .out = {.null = false, .out = out}, .autState = preState}; taosArrayPush(sws->stack, &s); out += trn.out; node = fstGetNode(sws->fst, trn.addr); } else { // This is a little tricky. We're in this case if the // given bound is not a prefix of any key in the FST. // Since this is a minimum bound, we need to find the // first transition in this node that proceeds the current // input byte. FstTransitions *trans = fstNodeTransitions(node); uint64_t i = 0; for (i = trans->range.start; i < trans->range.end; i++) { FstTransition trn; if (fstNodeGetTransitionAt(node, i, &trn) && trn.inp > b) { break; } } StreamState s = {.node = node, .trans = i, .out = {.null = false, .out = out}, .autState = autState}; taosArrayPush(sws->stack, &s); return true; } } uint32_t sz = taosArrayGetSize(sws->stack); if (sz != 0) { StreamState *s = taosArrayGet(sws->stack, sz - 1); if (inclusize) { s->trans -= 1; taosArrayPop(sws->inp); } else { FstNode *n = s->node; uint64_t trans = s->trans; FstTransition trn; fstNodeGetTransitionAt(n, trans - 1, &trn); StreamState s = {.node = fstGetNode(sws->fst, trn.addr), .trans= 0, .out = {.null = false, .out = out}, .autState = autState}; taosArrayPush(sws->stack, &s); return true; } return false; } } StreamWithStateResult *streamWithStateNextWith(StreamWithState *sws, StreamCallback callback) { FstOutput output = sws->emptyOutput; if (output.null == false) { FstSlice emptySlice = fstSliceCreate(NULL, 0); if (fstBoundWithDataExceededBy(sws->endAt, &emptySlice)) { taosArrayDestroyEx(sws->stack, streamStateDestroy); sws->stack = (SArray *)taosArrayInit(256, sizeof(StreamState)); return NULL; } void* start = sws->aut->start(); if (sws->aut->isMatch(start)) { FstSlice s = fstSliceCreate(NULL, 0); return swsResultCreate(&s, output, callback(start)); } } while (taosArrayGetSize(sws->stack) > 0) { StreamState *p = (StreamState *)taosArrayPop(sws->stack); if (p->trans >= FST_NODE_LEN(p->node) || !sws->aut->canMatch(p->autState)) { if (FST_NODE_ADDR(p->node) != fstGetRootAddr(sws->fst)) { taosArrayPop(sws->inp); } streamStateDestroy(p); continue; } FstTransition trn; fstNodeGetTransitionAt(p->node, p->trans, &trn); Output out = p->out.out + trn.out; void* nextState = sws->aut->accept(p->autState, trn.inp); void* tState = callback(nextState); bool isMatch = sws->aut->isMatch(nextState); FstNode *nextNode = fstGetNode(sws->fst, trn.addr); taosArrayPush(sws->inp, &(trn.inp)); if (FST_NODE_IS_FINAL(nextNode)) { void *eofState = sws->aut->acceptEof(nextState); if (eofState != NULL) { isMatch = sws->aut->isMatch(eofState); } } StreamState s1 = { .node = p->node, .trans = p->trans + 1, .out = p->out, .autState = p->autState}; taosArrayPush(sws->stack, &s1); StreamState s2 = {.node = nextNode, .trans = 0, .out = {.null = false, .out = out}, .autState = nextState}; taosArrayPush(sws->stack, &s2); uint8_t *buf = (uint8_t *)malloc(taosArrayGetSize(sws->inp) * sizeof(uint8_t)); for (uint32_t i = 0; i < taosArrayGetSize(sws->inp); i++) { uint8_t *t = (uint8_t *)taosArrayGet(sws->inp, i); buf[i] = *t; } FstSlice slice = fstSliceCreate(buf, taosArrayGetSize(sws->inp)); if (fstBoundWithDataExceededBy(sws->endAt, &slice)) { taosArrayDestroyEx(sws->stack, streamStateDestroy); sws->stack = (SArray *)taosArrayInit(256, sizeof(StreamState)); return NULL; } if (FST_NODE_IS_FINAL(nextNode) && isMatch) { FstOutput fOutput = {.null = false, .out = out + FST_NODE_FINAL_OUTPUT(nextNode)}; return swsResultCreate(&slice, fOutput , tState); } } return NULL; } StreamWithStateResult *swsResultCreate(FstSlice *data, FstOutput fOut, void *state) { StreamWithStateResult *result = calloc(1, sizeof(StreamWithStateResult)); if (result == NULL) { return NULL; } result->data = fstSliceCopy(data, 0, FST_SLICE_LEN(data) - 1); result->out = fOut; result->state = state; return result; } void streamStateDestroy(void *s) { if (NULL == s) { return; } StreamState *ss = (StreamState *)s; fstNodeDestroy(ss->node); //free(s->autoState); } FstStreamBuilder *fstStreamBuilderCreate(Fst *fst, Automation *aut) { FstStreamBuilder *b = calloc(1, sizeof(FstStreamBuilder)); if (NULL == b) { return NULL; } b->fst = fst; b->aut = aut; b->min = fstBoundStateCreate(Unbounded, NULL); b->max = fstBoundStateCreate(Unbounded, NULL); return b; } void fstStreamBuilderDestroy(FstStreamBuilder *b) { fstSliceDestroy(&b->min->data); fstSliceDestroy(&b->max->data); free(b); } FstStreamBuilder *fstStreamBuilderRange(FstStreamBuilder *b, FstSlice *val, RangeType type) { if (b == NULL) { return NULL; } if (type == GE) { b->min->type = Included; fstSliceDestroy(&(b->min->data)); b->min->data = fstSliceDeepCopy(val, 0, FST_SLICE_LEN(val) - 1); } else if (type == GT) { b->min->type = Excluded; fstSliceDestroy(&(b->min->data)); b->min->data = fstSliceDeepCopy(val, 0, FST_SLICE_LEN(val) - 1); } else if (type == LE) { b->max->type = Included; fstSliceDestroy(&(b->max->data)); b->max->data = fstSliceDeepCopy(val, 0, FST_SLICE_LEN(val) - 1); } else if (type == LT) { b->max->type = Excluded; fstSliceDestroy(&(b->max->data)); b->max->data = fstSliceDeepCopy(val, 0, FST_SLICE_LEN(val) - 1); } return b; }