/* * Copyright (c) 2019 TAOS Data, Inc. * * This program is free software: you can use, redistribute, and/or modify * it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ /* README.md TAOS compression * * INTEGER Compression Algorithm: * To compress integers (including char, short, int32_t, int64_t), the difference * between two integers is calculated at first. Then the difference is * transformed to positive by zig-zag encoding method * (https://gist.github.com/mfuerstenau/ba870a29e16536fdbaba). Then the value is * encoded using simple 8B method. For more information about simple 8B, * refer to https://en.wikipedia.org/wiki/8b/10b_encoding. * * NOTE : For bigint, only 59 bits can be used, which means data from -(2**59) to (2**59)-1 * are allowed. * * BOOLEAN Compression Algorithm: * We provide two methods for compress boolean types. Because boolean types in C * code are char bytes with 0 and 1 values only, only one bit can used to discriminate * the values. * 1. The first method is using only 1 bit to represent the boolean value with 1 for * true and 0 for false. Then the compression rate is 1/8. * 2. The second method is using run length encoding (RLE) methods. This method works * better when there are a lot of consecutive true values or false values. * * STRING Compression Algorithm: * We us LZ4 method to compress the string type. * * FLOAT Compression Algorithm: * We use the same method with Akumuli to compress float and double types. The compression * algorithm assumes the float/double values change slightly. So we take the XOR between two * adjacent values. Then compare the number of leading zeros and trailing zeros. If the number * of leading zeros are larger than the trailing zeros, then record the last serveral bytes * of the XORed value with informations. If not, record the first corresponding bytes. * */ #define _DEFAULT_SOURCE #include "tcompression.h" #include "lz4.h" #include "tRealloc.h" #include "tlog.h" #ifdef TD_TSZ #include "td_sz.h" #endif static const int32_t TEST_NUMBER = 1; #define is_bigendian() ((*(char *)&TEST_NUMBER) == 0) #define SIMPLE8B_MAX_INT64 ((uint64_t)1152921504606846974LL) #define safeInt64Add(a, b) (((a >= 0) && (b <= INT64_MAX - a)) || ((a < 0) && (b >= INT64_MIN - a))) #define ZIGZAG_ENCODE(T, v) ((u##T)((v) >> (sizeof(T) * 8 - 1))) ^ (((u##T)(v)) << 1) // zigzag encode #define ZIGZAG_DECODE(T, v) ((v) >> 1) ^ -((T)((v)&1)) // zigzag decode #ifdef TD_TSZ bool lossyFloat = false; bool lossyDouble = false; // init call int32_t tsCompressInit() { // config if (lossyColumns[0] == 0) { lossyFloat = false; lossyDouble = false; return 0; } lossyFloat = strstr(lossyColumns, "float") != NULL; lossyDouble = strstr(lossyColumns, "double") != NULL; if (lossyFloat == false && lossyDouble == false) return 0; tdszInit(fPrecision, dPrecision, maxRange, curRange, Compressor); if (lossyFloat) uTrace("lossy compression float is opened. "); if (lossyDouble) uTrace("lossy compression double is opened. "); return 1; } // exit call void tsCompressExit() { tdszExit(); } #endif /* * Compress Integer (Simple8B). */ int32_t tsCompressINTImp(const char *const input, const int32_t nelements, char *const output, const char type) { // Selector value: 0 1 2 3 4 5 6 7 8 9 10 11 // 12 13 14 15 char bit_per_integer[] = {0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 60}; int32_t selector_to_elems[] = {240, 120, 60, 30, 20, 15, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1}; char bit_to_selector[] = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; // get the byte limit. int32_t word_length = 0; switch (type) { case TSDB_DATA_TYPE_BIGINT: word_length = LONG_BYTES; break; case TSDB_DATA_TYPE_INT: word_length = INT_BYTES; break; case TSDB_DATA_TYPE_SMALLINT: word_length = SHORT_BYTES; break; case TSDB_DATA_TYPE_TINYINT: word_length = CHAR_BYTES; break; default: uError("Invalid compress integer type:%d", type); return -1; } int32_t byte_limit = nelements * word_length + 1; int32_t opos = 1; int64_t prev_value = 0; for (int32_t i = 0; i < nelements;) { char selector = 0; char bit = 0; int32_t elems = 0; int64_t prev_value_tmp = prev_value; for (int32_t j = i; j < nelements; j++) { // Read data from the input stream and convert it to INT64 type. int64_t curr_value = 0; switch (type) { case TSDB_DATA_TYPE_TINYINT: curr_value = (int64_t)(*((int8_t *)input + j)); break; case TSDB_DATA_TYPE_SMALLINT: curr_value = (int64_t)(*((int16_t *)input + j)); break; case TSDB_DATA_TYPE_INT: curr_value = (int64_t)(*((int32_t *)input + j)); break; case TSDB_DATA_TYPE_BIGINT: curr_value = (int64_t)(*((int64_t *)input + j)); break; } // Get difference. if (!safeInt64Add(curr_value, -prev_value_tmp)) goto _copy_and_exit; int64_t diff = curr_value - prev_value_tmp; // Zigzag encode the value. uint64_t zigzag_value = ZIGZAG_ENCODE(int64_t, diff); if (zigzag_value >= SIMPLE8B_MAX_INT64) goto _copy_and_exit; int64_t tmp_bit; if (zigzag_value == 0) { // Take care here, __builtin_clzl give wrong anser for value 0; tmp_bit = 0; } else { tmp_bit = (LONG_BYTES * BITS_PER_BYTE) - BUILDIN_CLZL(zigzag_value); } if (elems + 1 <= selector_to_elems[(int32_t)selector] && elems + 1 <= selector_to_elems[(int32_t)(bit_to_selector[(int32_t)tmp_bit])]) { // If can hold another one. selector = selector > bit_to_selector[(int32_t)tmp_bit] ? selector : bit_to_selector[(int32_t)tmp_bit]; elems++; bit = bit_per_integer[(int32_t)selector]; } else { // if cannot hold another one. while (elems < selector_to_elems[(int32_t)selector]) selector++; elems = selector_to_elems[(int32_t)selector]; bit = bit_per_integer[(int32_t)selector]; break; } prev_value_tmp = curr_value; } uint64_t buffer = 0; buffer |= (uint64_t)selector; for (int32_t k = 0; k < elems; k++) { int64_t curr_value = 0; /* get current values */ switch (type) { case TSDB_DATA_TYPE_TINYINT: curr_value = (int64_t)(*((int8_t *)input + i)); break; case TSDB_DATA_TYPE_SMALLINT: curr_value = (int64_t)(*((int16_t *)input + i)); break; case TSDB_DATA_TYPE_INT: curr_value = (int64_t)(*((int32_t *)input + i)); break; case TSDB_DATA_TYPE_BIGINT: curr_value = (int64_t)(*((int64_t *)input + i)); break; } int64_t diff = curr_value - prev_value; uint64_t zigzag_value = ZIGZAG_ENCODE(int64_t, diff); buffer |= ((zigzag_value & INT64MASK(bit)) << (bit * k + 4)); i++; prev_value = curr_value; } // Output the encoded value to the output. if (opos + sizeof(buffer) <= byte_limit) { memcpy(output + opos, &buffer, sizeof(buffer)); opos += sizeof(buffer); } else { _copy_and_exit: output[0] = 1; memcpy(output + 1, input, byte_limit - 1); return byte_limit; } } // set the indicator. output[0] = 0; return opos; } int32_t tsDecompressINTImp(const char *const input, const int32_t nelements, char *const output, const char type) { int32_t word_length = 0; switch (type) { case TSDB_DATA_TYPE_BIGINT: word_length = LONG_BYTES; break; case TSDB_DATA_TYPE_INT: word_length = INT_BYTES; break; case TSDB_DATA_TYPE_SMALLINT: word_length = SHORT_BYTES; break; case TSDB_DATA_TYPE_TINYINT: word_length = CHAR_BYTES; break; default: uError("Invalid decompress integer type:%d", type); return -1; } // If not compressed. if (input[0] == 1) { memcpy(output, input + 1, nelements * word_length); return nelements * word_length; } // Selector value: 0 1 2 3 4 5 6 7 8 9 10 11 // 12 13 14 15 char bit_per_integer[] = {0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 60}; int32_t selector_to_elems[] = {240, 120, 60, 30, 20, 15, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1}; const char *ip = input + 1; int32_t count = 0; int32_t _pos = 0; int64_t prev_value = 0; while (1) { if (count == nelements) break; uint64_t w = 0; memcpy(&w, ip, LONG_BYTES); char selector = (char)(w & INT64MASK(4)); // selector = 4 char bit = bit_per_integer[(int32_t)selector]; // bit = 3 int32_t elems = selector_to_elems[(int32_t)selector]; for (int32_t i = 0; i < elems; i++) { uint64_t zigzag_value; if (selector == 0 || selector == 1) { zigzag_value = 0; } else { zigzag_value = ((w >> (4 + bit * i)) & INT64MASK(bit)); } int64_t diff = ZIGZAG_DECODE(int64_t, zigzag_value); int64_t curr_value = diff + prev_value; prev_value = curr_value; switch (type) { case TSDB_DATA_TYPE_BIGINT: *((int64_t *)output + _pos) = (int64_t)curr_value; _pos++; break; case TSDB_DATA_TYPE_INT: *((int32_t *)output + _pos) = (int32_t)curr_value; _pos++; break; case TSDB_DATA_TYPE_SMALLINT: *((int16_t *)output + _pos) = (int16_t)curr_value; _pos++; break; case TSDB_DATA_TYPE_TINYINT: *((int8_t *)output + _pos) = (int8_t)curr_value; _pos++; break; default: perror("Wrong integer types.\n"); return -1; } count++; if (count == nelements) break; } ip += LONG_BYTES; } return nelements * word_length; } /* ----------------------------------------------Bool Compression * ---------------------------------------------- */ // TODO: You can also implement it using RLE method. int32_t tsCompressBoolImp(const char *const input, const int32_t nelements, char *const output) { int32_t pos = -1; int32_t ele_per_byte = BITS_PER_BYTE / 2; for (int32_t i = 0; i < nelements; i++) { if (i % ele_per_byte == 0) { pos++; output[pos] = 0; } uint8_t t = 0; if (input[i] == 1) { t = (((uint8_t)1) << (2 * (i % ele_per_byte))); output[pos] |= t; } else if (input[i] == 0) { t = ((uint8_t)1 << (2 * (i % ele_per_byte))) - 1; /* t = (~((( uint8_t)1) << (7-i%BITS_PER_BYTE))); */ output[pos] &= t; } else if (input[i] == TSDB_DATA_BOOL_NULL) { t = ((uint8_t)2 << (2 * (i % ele_per_byte))); /* t = (~((( uint8_t)1) << (7-i%BITS_PER_BYTE))); */ output[pos] |= t; } else { uError("Invalid compress bool value:%d", output[pos]); return -1; } } return pos + 1; } int32_t tsDecompressBoolImp(const char *const input, const int32_t nelements, char *const output) { int32_t ipos = -1, opos = 0; int32_t ele_per_byte = BITS_PER_BYTE / 2; for (int32_t i = 0; i < nelements; i++) { if (i % ele_per_byte == 0) { ipos++; } uint8_t ele = (input[ipos] >> (2 * (i % ele_per_byte))) & INT8MASK(2); if (ele == 1) { output[opos++] = 1; } else if (ele == 2) { output[opos++] = TSDB_DATA_BOOL_NULL; } else { output[opos++] = 0; } } return nelements; } /* Run Length Encoding(RLE) Method */ int32_t tsCompressBoolRLEImp(const char *const input, const int32_t nelements, char *const output) { int32_t _pos = 0; for (int32_t i = 0; i < nelements;) { unsigned char counter = 1; char num = input[i]; for (++i; i < nelements; i++) { if (input[i] == num) { counter++; if (counter == INT8MASK(7)) { i++; break; } } else { break; } } // Encode the data. if (num == 1) { output[_pos++] = INT8MASK(1) | (counter << 1); } else if (num == 0) { output[_pos++] = (counter << 1) | INT8MASK(0); } else { uError("Invalid compress bool value:%d", output[_pos]); return -1; } } return _pos; } int32_t tsDecompressBoolRLEImp(const char *const input, const int32_t nelements, char *const output) { int32_t ipos = 0, opos = 0; while (1) { char encode = input[ipos++]; unsigned counter = (encode >> 1) & INT8MASK(7); char value = encode & INT8MASK(1); memset(output + opos, value, counter); opos += counter; if (opos >= nelements) { return nelements; } } } /* ----------------------------------------------String Compression * ---------------------------------------------- */ // Note: the size of the output must be larger than input_size + 1 and // LZ4_compressBound(size) + 1; // >= max(input_size, LZ4_compressBound(input_size)) + 1; int32_t tsCompressStringImp(const char *const input, int32_t inputSize, char *const output, int32_t outputSize) { // Try to compress using LZ4 algorithm. const int32_t compressed_data_size = LZ4_compress_default(input, output + 1, inputSize, outputSize - 1); // If cannot compress or after compression, data becomes larger. if (compressed_data_size <= 0 || compressed_data_size > inputSize) { /* First byte is for indicator */ output[0] = 0; memcpy(output + 1, input, inputSize); return inputSize + 1; } output[0] = 1; return compressed_data_size + 1; } int32_t tsDecompressStringImp(const char *const input, int32_t compressedSize, char *const output, int32_t outputSize) { // compressedSize is the size of data after compression. if (input[0] == 1) { /* It is compressed by LZ4 algorithm */ const int32_t decompressed_size = LZ4_decompress_safe(input + 1, output, compressedSize - 1, outputSize); if (decompressed_size < 0) { uError("Failed to decompress string with LZ4 algorithm, decompressed size:%d", decompressed_size); return -1; } return decompressed_size; } else if (input[0] == 0) { /* It is not compressed by LZ4 algorithm */ memcpy(output, input + 1, compressedSize - 1); return compressedSize - 1; } else { uError("Invalid decompress string indicator:%d", input[0]); return -1; } } /* --------------------------------------------Timestamp Compression * ---------------------------------------------- */ // TODO: Take care here, we assumes little endian encoding. int32_t tsCompressTimestampImp(const char *const input, const int32_t nelements, char *const output) { int32_t _pos = 1; assert(nelements >= 0); if (nelements == 0) return 0; int64_t *istream = (int64_t *)input; int64_t prev_value = istream[0]; if (prev_value >= 0x8000000000000000) { uWarn("compression timestamp is over signed long long range. ts = 0x%" PRIx64 " \n", prev_value); goto _exit_over; } int64_t prev_delta = -prev_value; uint8_t flags = 0, flag1 = 0, flag2 = 0; uint64_t dd1 = 0, dd2 = 0; for (int32_t i = 0; i < nelements; i++) { int64_t curr_value = istream[i]; if (!safeInt64Add(curr_value, -prev_value)) goto _exit_over; int64_t curr_delta = curr_value - prev_value; if (!safeInt64Add(curr_delta, -prev_delta)) goto _exit_over; int64_t delta_of_delta = curr_delta - prev_delta; // zigzag encode the value. uint64_t zigzag_value = ZIGZAG_ENCODE(int64_t, delta_of_delta); if (i % 2 == 0) { flags = 0; dd1 = zigzag_value; if (dd1 == 0) { flag1 = 0; } else { flag1 = (uint8_t)(LONG_BYTES - BUILDIN_CLZL(dd1) / BITS_PER_BYTE); } } else { dd2 = zigzag_value; if (dd2 == 0) { flag2 = 0; } else { flag2 = (uint8_t)(LONG_BYTES - BUILDIN_CLZL(dd2) / BITS_PER_BYTE); } flags = flag1 | (flag2 << 4); // Encode the flag. if ((_pos + CHAR_BYTES - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, &flags, CHAR_BYTES); _pos += CHAR_BYTES; /* Here, we assume it is little endian encoding method. */ // Encode dd1 if (is_bigendian()) { if ((_pos + flag1 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd1) + LONG_BYTES - flag1, flag1); } else { if ((_pos + flag1 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd1), flag1); } _pos += flag1; // Encode dd2; if (is_bigendian()) { if ((_pos + flag2 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd2) + LONG_BYTES - flag2, flag2); } else { if ((_pos + flag2 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd2), flag2); } _pos += flag2; } prev_value = curr_value; prev_delta = curr_delta; } if (nelements % 2 == 1) { flag2 = 0; flags = flag1 | (flag2 << 4); // Encode the flag. if ((_pos + CHAR_BYTES - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, &flags, CHAR_BYTES); _pos += CHAR_BYTES; // Encode dd1; if (is_bigendian()) { if ((_pos + flag1 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd1) + LONG_BYTES - flag1, flag1); } else { if ((_pos + flag1 - 1) >= nelements * LONG_BYTES) goto _exit_over; memcpy(output + _pos, (char *)(&dd1), flag1); } _pos += flag1; } output[0] = 1; // Means the string is compressed return _pos; _exit_over: output[0] = 0; // Means the string is not compressed memcpy(output + 1, input, nelements * LONG_BYTES); return nelements * LONG_BYTES + 1; } int32_t tsDecompressTimestampImp(const char *const input, const int32_t nelements, char *const output) { assert(nelements >= 0); if (nelements == 0) return 0; if (input[0] == 0) { memcpy(output, input + 1, nelements * LONG_BYTES); return nelements * LONG_BYTES; } else if (input[0] == 1) { // Decompress int64_t *ostream = (int64_t *)output; int32_t ipos = 1, opos = 0; int8_t nbytes = 0; int64_t prev_value = 0; int64_t prev_delta = 0; int64_t delta_of_delta = 0; while (1) { uint8_t flags = input[ipos++]; // Decode dd1 uint64_t dd1 = 0; nbytes = flags & INT8MASK(4); if (nbytes == 0) { delta_of_delta = 0; } else { if (is_bigendian()) { memcpy(((char *)(&dd1)) + LONG_BYTES - nbytes, input + ipos, nbytes); } else { memcpy(&dd1, input + ipos, nbytes); } delta_of_delta = ZIGZAG_DECODE(int64_t, dd1); } ipos += nbytes; if (opos == 0) { prev_value = delta_of_delta; prev_delta = 0; ostream[opos++] = delta_of_delta; } else { prev_delta = delta_of_delta + prev_delta; prev_value = prev_value + prev_delta; ostream[opos++] = prev_value; } if (opos == nelements) return nelements * LONG_BYTES; // Decode dd2 uint64_t dd2 = 0; nbytes = (flags >> 4) & INT8MASK(4); if (nbytes == 0) { delta_of_delta = 0; } else { if (is_bigendian()) { memcpy(((char *)(&dd2)) + LONG_BYTES - nbytes, input + ipos, nbytes); } else { memcpy(&dd2, input + ipos, nbytes); } // zigzag_decoding delta_of_delta = ZIGZAG_DECODE(int64_t, dd2); } ipos += nbytes; prev_delta = delta_of_delta + prev_delta; prev_value = prev_value + prev_delta; ostream[opos++] = prev_value; if (opos == nelements) return nelements * LONG_BYTES; } } else { assert(0); return -1; } } /* --------------------------------------------Double Compression * ---------------------------------------------- */ void encodeDoubleValue(uint64_t diff, uint8_t flag, char *const output, int32_t *const pos) { uint8_t nbytes = (flag & INT8MASK(3)) + 1; int32_t nshift = (LONG_BYTES * BITS_PER_BYTE - nbytes * BITS_PER_BYTE) * (flag >> 3); diff >>= nshift; while (nbytes) { output[(*pos)++] = (int8_t)(diff & INT64MASK(8)); diff >>= BITS_PER_BYTE; nbytes--; } } int32_t tsCompressDoubleImp(const char *const input, const int32_t nelements, char *const output) { int32_t byte_limit = nelements * DOUBLE_BYTES + 1; int32_t opos = 1; uint64_t prev_value = 0; uint64_t prev_diff = 0; uint8_t prev_flag = 0; double *istream = (double *)input; // Main loop for (int32_t i = 0; i < nelements; i++) { union { double real; uint64_t bits; } curr; curr.real = istream[i]; // Here we assume the next value is the same as previous one. uint64_t predicted = prev_value; uint64_t diff = curr.bits ^ predicted; int32_t leading_zeros = LONG_BYTES * BITS_PER_BYTE; int32_t trailing_zeros = leading_zeros; if (diff) { trailing_zeros = BUILDIN_CTZL(diff); leading_zeros = BUILDIN_CLZL(diff); } uint8_t nbytes = 0; uint8_t flag; if (trailing_zeros > leading_zeros) { nbytes = (uint8_t)(LONG_BYTES - trailing_zeros / BITS_PER_BYTE); if (nbytes > 0) nbytes--; flag = ((uint8_t)1 << 3) | nbytes; } else { nbytes = (uint8_t)(LONG_BYTES - leading_zeros / BITS_PER_BYTE); if (nbytes > 0) nbytes--; flag = nbytes; } if (i % 2 == 0) { prev_diff = diff; prev_flag = flag; } else { int32_t nbyte1 = (prev_flag & INT8MASK(3)) + 1; int32_t nbyte2 = (flag & INT8MASK(3)) + 1; if (opos + 1 + nbyte1 + nbyte2 <= byte_limit) { uint8_t flags = prev_flag | (flag << 4); output[opos++] = flags; encodeDoubleValue(prev_diff, prev_flag, output, &opos); encodeDoubleValue(diff, flag, output, &opos); } else { output[0] = 1; memcpy(output + 1, input, byte_limit - 1); return byte_limit; } } prev_value = curr.bits; } if (nelements % 2) { int32_t nbyte1 = (prev_flag & INT8MASK(3)) + 1; int32_t nbyte2 = 1; if (opos + 1 + nbyte1 + nbyte2 <= byte_limit) { uint8_t flags = prev_flag; output[opos++] = flags; encodeDoubleValue(prev_diff, prev_flag, output, &opos); encodeDoubleValue(0ul, 0, output, &opos); } else { output[0] = 1; memcpy(output + 1, input, byte_limit - 1); return byte_limit; } } output[0] = 0; return opos; } uint64_t decodeDoubleValue(const char *const input, int32_t *const ipos, uint8_t flag) { uint64_t diff = 0ul; int32_t nbytes = (flag & INT8MASK(3)) + 1; for (int32_t i = 0; i < nbytes; i++) { diff = diff | ((INT64MASK(8) & input[(*ipos)++]) << BITS_PER_BYTE * i); } int32_t shift_width = (LONG_BYTES * BITS_PER_BYTE - nbytes * BITS_PER_BYTE) * (flag >> 3); diff <<= shift_width; return diff; } int32_t tsDecompressDoubleImp(const char *const input, const int32_t nelements, char *const output) { // output stream double *ostream = (double *)output; if (input[0] == 1) { memcpy(output, input + 1, nelements * DOUBLE_BYTES); return nelements * DOUBLE_BYTES; } uint8_t flags = 0; int32_t ipos = 1; int32_t opos = 0; uint64_t prev_value = 0; for (int32_t i = 0; i < nelements; i++) { if (i % 2 == 0) { flags = input[ipos++]; } uint8_t flag = flags & INT8MASK(4); flags >>= 4; uint64_t diff = decodeDoubleValue(input, &ipos, flag); union { uint64_t bits; double real; } curr; uint64_t predicted = prev_value; curr.bits = predicted ^ diff; prev_value = curr.bits; ostream[opos++] = curr.real; } return nelements * DOUBLE_BYTES; } /* --------------------------------------------Float Compression * ---------------------------------------------- */ void encodeFloatValue(uint32_t diff, uint8_t flag, char *const output, int32_t *const pos) { uint8_t nbytes = (flag & INT8MASK(3)) + 1; int32_t nshift = (FLOAT_BYTES * BITS_PER_BYTE - nbytes * BITS_PER_BYTE) * (flag >> 3); diff >>= nshift; while (nbytes) { output[(*pos)++] = (int8_t)(diff & INT32MASK(8)); diff >>= BITS_PER_BYTE; nbytes--; } } int32_t tsCompressFloatImp(const char *const input, const int32_t nelements, char *const output) { float *istream = (float *)input; int32_t byte_limit = nelements * FLOAT_BYTES + 1; int32_t opos = 1; uint32_t prev_value = 0; uint32_t prev_diff = 0; uint8_t prev_flag = 0; // Main loop for (int32_t i = 0; i < nelements; i++) { union { float real; uint32_t bits; } curr; curr.real = istream[i]; // Here we assume the next value is the same as previous one. uint32_t predicted = prev_value; uint32_t diff = curr.bits ^ predicted; int32_t leading_zeros = FLOAT_BYTES * BITS_PER_BYTE; int32_t trailing_zeros = leading_zeros; if (diff) { trailing_zeros = BUILDIN_CTZ(diff); leading_zeros = BUILDIN_CLZ(diff); } uint8_t nbytes = 0; uint8_t flag; if (trailing_zeros > leading_zeros) { nbytes = (uint8_t)(FLOAT_BYTES - trailing_zeros / BITS_PER_BYTE); if (nbytes > 0) nbytes--; flag = ((uint8_t)1 << 3) | nbytes; } else { nbytes = (uint8_t)(FLOAT_BYTES - leading_zeros / BITS_PER_BYTE); if (nbytes > 0) nbytes--; flag = nbytes; } if (i % 2 == 0) { prev_diff = diff; prev_flag = flag; } else { int32_t nbyte1 = (prev_flag & INT8MASK(3)) + 1; int32_t nbyte2 = (flag & INT8MASK(3)) + 1; if (opos + 1 + nbyte1 + nbyte2 <= byte_limit) { uint8_t flags = prev_flag | (flag << 4); output[opos++] = flags; encodeFloatValue(prev_diff, prev_flag, output, &opos); encodeFloatValue(diff, flag, output, &opos); } else { output[0] = 1; memcpy(output + 1, input, byte_limit - 1); return byte_limit; } } prev_value = curr.bits; } if (nelements % 2) { int32_t nbyte1 = (prev_flag & INT8MASK(3)) + 1; int32_t nbyte2 = 1; if (opos + 1 + nbyte1 + nbyte2 <= byte_limit) { uint8_t flags = prev_flag; output[opos++] = flags; encodeFloatValue(prev_diff, prev_flag, output, &opos); encodeFloatValue(0, 0, output, &opos); } else { output[0] = 1; memcpy(output + 1, input, byte_limit - 1); return byte_limit; } } output[0] = 0; return opos; } uint32_t decodeFloatValue(const char *const input, int32_t *const ipos, uint8_t flag) { uint32_t diff = 0ul; int32_t nbytes = (flag & INT8MASK(3)) + 1; for (int32_t i = 0; i < nbytes; i++) { diff = diff | ((INT32MASK(8) & input[(*ipos)++]) << BITS_PER_BYTE * i); } int32_t shift_width = (FLOAT_BYTES * BITS_PER_BYTE - nbytes * BITS_PER_BYTE) * (flag >> 3); diff <<= shift_width; return diff; } int32_t tsDecompressFloatImp(const char *const input, const int32_t nelements, char *const output) { float *ostream = (float *)output; if (input[0] == 1) { memcpy(output, input + 1, nelements * FLOAT_BYTES); return nelements * FLOAT_BYTES; } uint8_t flags = 0; int32_t ipos = 1; int32_t opos = 0; uint32_t prev_value = 0; for (int32_t i = 0; i < nelements; i++) { if (i % 2 == 0) { flags = input[ipos++]; } uint8_t flag = flags & INT8MASK(4); flags >>= 4; uint32_t diff = decodeFloatValue(input, &ipos, flag); union { uint32_t bits; float real; } curr; uint32_t predicted = prev_value; curr.bits = predicted ^ diff; prev_value = curr.bits; ostream[opos++] = curr.real; } return nelements * FLOAT_BYTES; } #ifdef TD_TSZ // // ---------- float double lossy ----------- // int32_t tsCompressFloatLossyImp(const char *input, const int32_t nelements, char *const output) { // compress with sz int32_t compressedSize = tdszCompress(SZ_FLOAT, input, nelements, output + 1); unsigned char algo = ALGO_SZ_LOSSY << 1; if (compressedSize == 0 || compressedSize >= nelements * sizeof(float)) { // compressed error or large than original output[0] = MODE_NOCOMPRESS | algo; memcpy(output + 1, input, nelements * sizeof(float)); compressedSize = 1 + nelements * sizeof(float); } else { // compressed successfully output[0] = MODE_COMPRESS | algo; compressedSize += 1; } return compressedSize; } int32_t tsDecompressFloatLossyImp(const char *input, int32_t compressedSize, const int32_t nelements, char *const output) { int32_t decompressedSize = 0; if (HEAD_MODE(input[0]) == MODE_NOCOMPRESS) { // orginal so memcpy directly decompressedSize = nelements * sizeof(float); memcpy(output, input + 1, decompressedSize); return decompressedSize; } // decompressed with sz return tdszDecompress(SZ_FLOAT, input + 1, compressedSize - 1, nelements, output); } int32_t tsCompressDoubleLossyImp(const char *input, const int32_t nelements, char *const output) { // compress with sz int32_t compressedSize = tdszCompress(SZ_DOUBLE, input, nelements, output + 1); unsigned char algo = ALGO_SZ_LOSSY << 1; if (compressedSize == 0 || compressedSize >= nelements * sizeof(double)) { // compressed error or large than original output[0] = MODE_NOCOMPRESS | algo; memcpy(output + 1, input, nelements * sizeof(double)); compressedSize = 1 + nelements * sizeof(double); } else { // compressed successfully output[0] = MODE_COMPRESS | algo; compressedSize += 1; } return compressedSize; } int32_t tsDecompressDoubleLossyImp(const char *input, int32_t compressedSize, const int32_t nelements, char *const output) { int32_t decompressedSize = 0; if (HEAD_MODE(input[0]) == MODE_NOCOMPRESS) { // orginal so memcpy directly decompressedSize = nelements * sizeof(double); memcpy(output, input + 1, decompressedSize); return decompressedSize; } // decompressed with sz return tdszDecompress(SZ_DOUBLE, input + 1, compressedSize - 1, nelements, output); } #endif /************************************************************************* * STREAM COMPRESSION *************************************************************************/ #define I64_SAFE_ADD(a, b) (((a) >= 0 && (b) <= INT64_MAX - (b)) || ((a) < 0 && (b) >= INT64_MIN - (a))) typedef struct { int8_t type; int8_t cmprAlg; uint8_t *aBuf[2]; int64_t nBuf[2]; union { // Timestamp ---- struct { int8_t ts_copy; int32_t ts_n; int64_t ts_prev_val; int64_t ts_prev_delta; uint8_t *ts_flag_p; }; // Integer ---- struct { int8_t i_copy; int32_t i_n; int64_t i_prev; int32_t i_selector; int32_t i_nele; }; // Float ---- struct { int32_t f_n; uint32_t f_prev; uint8_t *f_flag_p; }; // Double ---- struct { int32_t d_n; uint64_t d_prev; uint8_t *d_flag_p; }; // Bool ---- struct { int32_t bool_n; }; // Binary ---- struct { int32_t b_n; }; }; } SCompressor; // Timestamp ===================================================== static int32_t tCompSetCopyMode(SCompressor *pCmprsor) { int32_t code = 0; if (pCmprsor->ts_n) { code = tRealloc(&pCmprsor->aBuf[1], sizeof(int64_t) * (pCmprsor->ts_n + 1)); if (code) return code; pCmprsor->nBuf[1] = 1; int64_t n = 1; int64_t valPrev; int64_t delPrev; uint64_t vZigzag; while (n < pCmprsor->nBuf[0]) { uint8_t n1 = pCmprsor->aBuf[0][0] & 0xf; uint8_t n2 = pCmprsor->aBuf[0][0] >> 4; n++; vZigzag = 0; for (uint8_t i = 0; i < n1; i++) { vZigzag |= (((uint64_t)pCmprsor->aBuf[0][n]) << (sizeof(int64_t) * i)); n++; } int64_t delta_of_delta = ZIGZAG_DECODE(int64_t, vZigzag); if (n == 2) { delPrev = 0; valPrev = delta_of_delta; } else { delPrev = delta_of_delta + delPrev; valPrev = delPrev + valPrev; } memcpy(pCmprsor->aBuf[1] + pCmprsor->nBuf[1], &valPrev, sizeof(int64_t)); pCmprsor->nBuf[1] += sizeof(int64_t); if (n >= pCmprsor->nBuf[0]) break; vZigzag = 0; for (uint8_t i = 0; i < n2; i++) { vZigzag |= (((uint64_t)pCmprsor->aBuf[0][n]) << (sizeof(int64_t) * i)); n++; } delta_of_delta = ZIGZAG_DECODE(int64_t, vZigzag); delPrev = delta_of_delta + delPrev; valPrev = delPrev + valPrev; } uint8_t *pBuf = pCmprsor->aBuf[0]; pCmprsor->aBuf[0] = pCmprsor->aBuf[1]; pCmprsor->aBuf[1] = pBuf; pCmprsor->nBuf[0] = pCmprsor->nBuf[1]; } else { // TODO } pCmprsor->aBuf[0][0] = 0; pCmprsor->ts_copy = 1; return code; } static int32_t tCompTimestamp(SCompressor *pCmprsor, TSKEY ts) { int32_t code = 0; if (pCmprsor->ts_n == 0) { pCmprsor->ts_prev_val = ts; pCmprsor->ts_prev_delta = -ts; } if (pCmprsor->ts_copy) goto _copy_exit; if (!I64_SAFE_ADD(ts, -pCmprsor->ts_prev_val)) { code = tCompSetCopyMode(pCmprsor); if (code) return code; goto _copy_exit; } int64_t delta = ts - pCmprsor->ts_prev_val; if (!I64_SAFE_ADD(delta, -pCmprsor->ts_prev_delta)) { code = tCompSetCopyMode(pCmprsor); if (code) return code; goto _copy_exit; } int64_t delta_of_delta = delta - pCmprsor->ts_prev_delta; uint64_t zigzag_value = ZIGZAG_ENCODE(int64_t, delta_of_delta); pCmprsor->ts_prev_val = ts; pCmprsor->ts_prev_delta = delta; if (pCmprsor->ts_n & 0x1 == 0) { code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + 17 /*sizeof(int64_t) * 2 + 1*/); if (code) return code; pCmprsor->ts_flag_p = &pCmprsor->aBuf[0][pCmprsor->nBuf[0]]; pCmprsor->nBuf[0]++; pCmprsor->ts_flag_p[0] = 0; while (zigzag_value) { pCmprsor->aBuf[0][pCmprsor->nBuf[0]] = (zigzag_value & 0xff); pCmprsor->nBuf[0]++; pCmprsor->ts_flag_p[0]++; } } else { while (zigzag_value) { pCmprsor->aBuf[0][pCmprsor->nBuf[0]] = (zigzag_value & 0xff); pCmprsor->nBuf[0]++; pCmprsor->ts_flag_p += (uint8_t)0x10; } } pCmprsor->ts_n++; return code; _copy_exit: code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + sizeof(int64_t)); if (code) return code; memcpy(pCmprsor->aBuf[0] + pCmprsor->nBuf[0], &ts, sizeof(ts)); pCmprsor->nBuf[0] += sizeof(ts); pCmprsor->ts_n++; return code; } // Integer ===================================================== #define SIMPLE8B_MAX ((uint64_t)1152921504606846974LL) static const char bit_per_integer[] = {0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 60}; static const int32_t selector_to_elems[] = {240, 120, 60, 30, 20, 15, 12, 10, 8, 7, 6, 5, 4, 3, 2, 1}; static const char bit_to_selector[] = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; static int32_t tCompI64(SCompressor *pCmprsor, int64_t val) { int32_t code = 0; if (pCmprsor->i_copy == 1) goto _copy_cmpr; if (!I64_SAFE_ADD(val, pCmprsor->i_prev)) { // TODO goto _copy_cmpr; } int64_t diff = val - pCmprsor->i_prev; uint64_t vZigzag = ZIGZAG_ENCODE(int64_t, diff); if (vZigzag >= SIMPLE8B_MAX) { // TODO goto _copy_cmpr; } int64_t nBit; if (vZigzag) { nBit = 64 - BUILDIN_CLZL(vZigzag); } else { nBit = 0; } if (pCmprsor->i_nele + 1 <= selector_to_elems[pCmprsor->i_selector] && pCmprsor->i_nele + 1 <= selector_to_elems[bit_to_selector[nBit]]) { if (pCmprsor->i_selector < bit_to_selector[nBit]) { pCmprsor->i_selector = bit_to_selector[nBit]; } pCmprsor->i_nele++; } else { while (pCmprsor->i_nele < selector_to_elems[pCmprsor->i_selector]) { pCmprsor->i_selector++; } pCmprsor->i_nele = selector_to_elems[pCmprsor->i_selector]; code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + sizeof(uint64_t)); if (code) return code; uint64_t *bp = (uint64_t *)(pCmprsor->aBuf[0] + pCmprsor->nBuf[0]); pCmprsor->nBuf[0] += sizeof(uint64_t); bp[0] = pCmprsor->i_selector; for (int32_t iVal = 0; iVal < pCmprsor->i_nele; iVal++) { /* code */ } // reset and continue } return code; _copy_cmpr: code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + 0 /*tDataTypes[pCmprsor->type].bytes (todo)*/); if (code) return code; // memcpy(pCmprsor->aBuf[0] + pCmprsor->nBuf[0], NULL /* todo */, 0 /*tDataTypes[pCmprsor->type].bytes (todo)*/); // pCmprsor->nBuf[0] += tDataTypes[pCmprsor->type].bytes; return code; } // Float ===================================================== static int32_t tCompFloat(SCompressor *pCmprsor, float f) { int32_t code = 0; union { float f; uint32_t u; } val = {.f = f}; uint32_t diff = val.u ^ pCmprsor->f_prev; pCmprsor->f_prev = val.u; int32_t clz, ctz; if (diff) { clz = BUILDIN_CLZ(diff); ctz = BUILDIN_CTZ(diff); } else { clz = sizeof(uint32_t); ctz = sizeof(uint32_t); } if (pCmprsor->f_n & 0x1 == 0) { code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + 9 /* sizeof(float) * 2 + 1 */); if (code) return code; pCmprsor->f_flag_p = &pCmprsor->aBuf[0][pCmprsor->nBuf[0]]; pCmprsor->nBuf[0]++; if (clz < ctz) { uint8_t nBytes = sizeof(uint32_t) - ctz / BITS_PER_BYTE; pCmprsor->f_flag_p[0] = (0x08 | (nBytes - 1)); diff >>= (32 - nBytes * BITS_PER_BYTE); } else { uint8_t nBytes = sizeof(uint32_t) - clz / BITS_PER_BYTE; pCmprsor->f_flag_p[0] = nBytes - 1; } } else { if (clz < ctz) { uint8_t nBytes = sizeof(uint32_t) - ctz / BITS_PER_BYTE; pCmprsor->f_flag_p[0] |= ((0x08 | (nBytes - 1)) << 4); diff >>= (32 - nBytes * BITS_PER_BYTE); } else { uint8_t nBytes = sizeof(uint32_t) - clz / BITS_PER_BYTE; pCmprsor->f_flag_p[0] |= ((nBytes - 1) << 4); } } while (diff) { pCmprsor->aBuf[0][pCmprsor->nBuf[0]] = (diff & 0xff); pCmprsor->nBuf[0]++; diff >>= BITS_PER_BYTE; } pCmprsor->f_n++; return code; } // Double ===================================================== static int32_t tCompDouble(SCompressor *pCmprsor, double d) { int32_t code = 0; union { double d; uint64_t u; } val = {.d = d}; uint64_t diff = val.u ^ pCmprsor->d_prev; pCmprsor->d_prev = val.u; int32_t clz, ctz; if (diff) { clz = BUILDIN_CLZL(diff); ctz = BUILDIN_CTZL(diff); } else { clz = sizeof(uint64_t); ctz = sizeof(uint64_t); } if (pCmprsor->d_n & 0x1 == 0) { code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + 17 /* sizeof(double) * 2 + 1 */); if (code) return code; pCmprsor->d_flag_p = &pCmprsor->aBuf[0][pCmprsor->nBuf[0]]; pCmprsor->nBuf[0]++; if (clz < ctz) { uint8_t nBytes = sizeof(uint64_t) - ctz / BITS_PER_BYTE; pCmprsor->d_flag_p[0] = (0x08 | (nBytes - 1)); diff >>= (64 - nBytes * BITS_PER_BYTE); } else { uint8_t nBytes = sizeof(uint64_t) - clz / BITS_PER_BYTE; pCmprsor->d_flag_p[0] = nBytes - 1; } } else { if (clz < ctz) { uint8_t nBytes = sizeof(uint64_t) - ctz / BITS_PER_BYTE; pCmprsor->d_flag_p[0] |= ((0x08 | (nBytes - 1)) << 4); diff >>= (64 - nBytes * BITS_PER_BYTE); } else { uint8_t nBytes = sizeof(uint64_t) - clz / BITS_PER_BYTE; pCmprsor->d_flag_p[0] |= ((nBytes - 1) << 4); } } while (diff) { pCmprsor->aBuf[0][pCmprsor->nBuf[0]] = (diff & 0xff); pCmprsor->nBuf[0]++; diff >>= BITS_PER_BYTE; } pCmprsor->d_n++; return code; } // Binary ===================================================== static int32_t tCompBinary(SCompressor *pCmprsor, const uint8_t *pData, int32_t nData) { int32_t code = 0; if (nData) { code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0] + nData); if (code) return code; memcpy(pCmprsor->aBuf[0] + pCmprsor->nBuf[0], pData, nData); pCmprsor->nBuf[0] += nData; } pCmprsor->b_n++; return code; } // Bool ===================================================== static const uint8_t BOOL_CMPR_TABLE[] = {0b01, 0b0100, 0b010000, 0b01000000}; static int32_t tCompBool(SCompressor *pCmprsor, bool vBool) { int32_t code = 0; int32_t mod4 = pCmprsor->bool_n & 3; if (vBool) { pCmprsor->aBuf[0][pCmprsor->nBuf[0]] |= BOOL_CMPR_TABLE[mod4]; } pCmprsor->bool_n++; if (mod4 == 3) { pCmprsor->nBuf[0]++; pCmprsor->aBuf[0][pCmprsor->nBuf[0]] = 0; code = tRealloc(&pCmprsor->aBuf[0], pCmprsor->nBuf[0]); if (code) goto _exit; } _exit: return code; } // SCompressor ===================================================== int32_t tCompressorCreate(SCompressor **ppCmprsor) { int32_t code = 0; *ppCmprsor = (SCompressor *)taosMemoryCalloc(1, sizeof(SCompressor)); if ((*ppCmprsor) == NULL) { code = TSDB_CODE_OUT_OF_MEMORY; goto _exit; } code = tRealloc(&(*ppCmprsor)->aBuf[0], 1024); if (code) { taosMemoryFree(*ppCmprsor); *ppCmprsor = NULL; goto _exit; } _exit: return code; } int32_t tCompressorDestroy(SCompressor *pCmprsor) { int32_t code = 0; if (pCmprsor) { int32_t nBuf = sizeof(pCmprsor->aBuf) / sizeof(pCmprsor->aBuf[0]); for (int32_t iBuf = 0; iBuf < nBuf; iBuf++) { tFree(pCmprsor->aBuf[iBuf]); } taosMemoryFree(pCmprsor); } return code; } int32_t tCompressorReset(SCompressor *pCmprsor, int8_t type, int8_t cmprAlg) { int32_t code = 0; pCmprsor->type = type; pCmprsor->cmprAlg = cmprAlg; pCmprsor->nBuf[0] = 0; // (todo) may or may not +/- 1 switch (type) { case TSDB_DATA_TYPE_TIMESTAMP: pCmprsor->ts_copy = 0; pCmprsor->ts_n = 0; break; case TSDB_DATA_TYPE_BOOL: pCmprsor->bool_n = 0; pCmprsor->aBuf[0][0] = 0; break; case TSDB_DATA_TYPE_BINARY: pCmprsor->b_n = 0; break; default: break; } return code; } int32_t tCompGen(SCompressor *pCmprsor, const uint8_t **ppData, int64_t *nData) { int32_t code = 0; if (pCmprsor->cmprAlg == TWO_STAGE_COMP /*|| IS_VAR_DATA_TYPE(pCmprsor->type)*/) { code = tRealloc(&pCmprsor->aBuf[1], pCmprsor->nBuf[0] + 1); if (code) goto _exit; int64_t ret = LZ4_compress_default(pCmprsor->aBuf[0], pCmprsor->aBuf[1] + 1, pCmprsor->nBuf[0], pCmprsor->nBuf[0]); if (ret) { pCmprsor->aBuf[1][0] = 0; pCmprsor->nBuf[1] = ret + 1; } else { pCmprsor->aBuf[1][0] = 1; memcpy(pCmprsor->aBuf[1] + 1, pCmprsor->aBuf[0], pCmprsor->nBuf[0]); pCmprsor->nBuf[1] = pCmprsor->nBuf[0] + 1; } *ppData = pCmprsor->aBuf[1]; *nData = pCmprsor->nBuf[1]; } else { *ppData = pCmprsor->aBuf[0]; *nData = pCmprsor->nBuf[0]; } _exit: return code; } int32_t tCompress(SCompressor *pCmprsor, void *pData, int64_t nData) { int32_t code = 0; // TODO return code; }