--- sidebar_label: 流式计算 description: "TDengine 流式计算将数据的写入、预处理、复杂分析、实时计算、报警触发等功能融为一体,是一个能够降低用户部署成本、存储成本和运维成本的计算引擎。" title: 流式计算 --- 在时序数据的处理中,经常要对原始数据进行清洗、预处理,再使用时序数据库进行长久的储存。用户通常需要在时序数据库之外再搭建 Kafka、Flink、Spark 等流计算处理引擎,增加了用户的开发成本和维护成本。 使用 TDengine 3.0 的流式计算引擎能够最大限度的减少对这些额外中间件的依赖,真正将数据的写入、预处理、长期存储、复杂分析、实时计算、实时报警触发等功能融为一体,并且,所有这些任务只需要使用 SQL 完成,极大降低了用户的学习成本、使用成本。 ## 流式计算的创建 ```sql CREATE STREAM [IF NOT EXISTS] stream_name [stream_options] INTO stb_name AS subquery stream_options: { TRIGGER [AT_ONCE | WINDOW_CLOSE | MAX_DELAY time] WATERMARK time IGNORE EXPIRED } ``` 详细的语法规则参考 [流式计算](../../taos-sql/stream) ## 示例一 企业电表的数据经常都是成百上千亿条的,那么想要将这些分散、凌乱的数据清洗或转换都需要比较长的时间,很难做到高效性和实时性,以下例子中,通过流计算可以将电表电压大于 220V 的数据清洗掉,然后以 5 秒为窗口整合并计算出每个窗口中电流的最大值,最后将结果输出到指定的数据表中。 ### 创建 DB 和原始数据表 首先准备数据,完成建库、建一张超级表和多张子表操作 ```sql DROP DATABASE IF EXISTS power; CREATE DATABASE power; USE power; CREATE STABLE meters (ts timestamp, current float, voltage int, phase float) TAGS (location binary(64), groupId int); CREATE TABLE d1001 USING meters TAGS ("California.SanFrancisco", 2); CREATE TABLE d1002 USING meters TAGS ("California.SanFrancisco", 3); CREATE TABLE d1003 USING meters TAGS ("California.LosAngeles", 2); CREATE TABLE d1004 USING meters TAGS ("California.LosAngeles", 3); ``` ### 创建流 ```sql create stream current_stream into current_stream_output_stb as select _wstart as start, _wend as end, max(current) as max_current from meters where voltage <= 220 interval (5s); ``` ### 写入数据 ```sql insert into d1001 values("2018-10-03 14:38:05.000", 10.30000, 219, 0.31000); insert into d1001 values("2018-10-03 14:38:15.000", 12.60000, 218, 0.33000); insert into d1001 values("2018-10-03 14:38:16.800", 12.30000, 221, 0.31000); insert into d1002 values("2018-10-03 14:38:16.650", 10.30000, 218, 0.25000); insert into d1003 values("2018-10-03 14:38:05.500", 11.80000, 221, 0.28000); insert into d1003 values("2018-10-03 14:38:16.600", 13.40000, 223, 0.29000); insert into d1004 values("2018-10-03 14:38:05.000", 10.80000, 223, 0.29000); insert into d1004 values("2018-10-03 14:38:06.500", 11.50000, 221, 0.35000); ``` ### 查询以观查结果 ```sql taos> select start, end, max_current from current_stream_output_stb; start | end | max_current | =========================================================================== 2018-10-03 14:38:05.000 | 2018-10-03 14:38:10.000 | 10.30000 | 2018-10-03 14:38:15.000 | 2018-10-03 14:38:20.000 | 12.60000 | Query OK, 2 rows in database (0.018762s) ``` ## 示例二 依然以示例一中的数据为基础,我们已经采集到了每个智能电表的电流和电压数据,现在需要求出有功功率和无功功率,并将地域和电表名以符号 "." 拼接,然后以电表名称分组输出到新的数据表中。 ### 创建 DB 和原始数据表 参考示例一 [创建 DB 和原始数据表](#创建-db-和原始数据表) ### 创建流 ```sql create stream power_stream into power_stream_output_stb as select ts, concat_ws(".", location, tbname) as meter_location, current*voltage*cos(phase) as active_power, current*voltage*sin(phase) as reactive_power from meters partition by tbname; ``` ### 写入数据 参考示例一 [写入数据](#写入数据) ### 查询以观查结果 ```sql taos> select ts, meter_location, active_power, reactive_power from power_stream_output_stb; ts | meter_location | active_power | reactive_power | =================================================================================================================== 2018-10-03 14:38:05.000 | California.LosAngeles.d1004 | 2307.834596289 | 688.687331847 | 2018-10-03 14:38:06.500 | California.LosAngeles.d1004 | 2387.415754896 | 871.474763418 | 2018-10-03 14:38:05.500 | California.LosAngeles.d1003 | 2506.240411679 | 720.680274962 | 2018-10-03 14:38:16.600 | California.LosAngeles.d1003 | 2863.424274422 | 854.482390839 | 2018-10-03 14:38:05.000 | California.SanFrancisco.d1001 | 2148.178871730 | 688.120784090 | 2018-10-03 14:38:15.000 | California.SanFrancisco.d1001 | 2598.589176205 | 890.081451418 | 2018-10-03 14:38:16.800 | California.SanFrancisco.d1001 | 2588.728381186 | 829.240910475 | 2018-10-03 14:38:16.650 | California.SanFrancisco.d1002 | 2175.595991997 | 555.520860397 | Query OK, 8 rows in database (0.014753s) ```