import taos # ANCHOR: insert conn = taos.connect() # Execute a sql, ignore the result set, just get affected rows. It's useful for DDL and DML statement. conn.execute("DROP DATABASE IF EXISTS test") conn.execute("CREATE DATABASE test") # change database. same as execute "USE db" conn.select_db("test") conn.execute("CREATE STABLE weather(ts TIMESTAMP, temperature FLOAT) TAGS (location INT)") affected_row = conn.execute("INSERT INTO t1 USING weather TAGS(1) VALUES (now, 23.5) (now+1m, 23.5) (now+2m, 24.4)") print("affected_row", affected_row) # output: # affected_row 3 # ANCHOR_END: insert # ANCHOR: query # Execute a sql and get its result set. It's useful for SELECT statement result = conn.query("SELECT * from weather") # Get fields from result fields = result.fields for field in fields: print(field) # {name: ts, type: 9, bytes: 8} # output: # {name: ts, type: 9, bytes: 8} # {name: temperature, type: 6, bytes: 4} # {name: location, type: 4, bytes: 4} # Get data from result as list of tuple data = result.fetch_all() print(data) # output: # [(datetime.datetime(2022, 4, 27, 9, 4, 25, 367000), 23.5, 1), (datetime.datetime(2022, 4, 27, 9, 5, 25, 367000), 23.5, 1), (datetime.datetime(2022, 4, 27, 9, 6, 25, 367000), 24.399999618530273, 1)] # Or get data from result as a list of dict # map_data = result.fetch_all_into_dict() # print(map_data) # output: # [{'ts': datetime.datetime(2022, 4, 27, 9, 1, 15, 343000), 'temperature': 23.5, 'location': 1}, {'ts': datetime.datetime(2022, 4, 27, 9, 2, 15, 343000), 'temperature': 23.5, 'location': 1}, {'ts': datetime.datetime(2022, 4, 27, 9, 3, 15, 343000), 'temperature': 24.399999618530273, 'location': 1}] # ANCHOR_END: query conn.close()