/* * Copyright (c) 2019 TAOS Data, Inc. * * This program is free software: you can use, redistribute, and/or modify * it under the terms of the GNU Affero General Public License, version 3 * or later ("AGPL"), as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ #include "insertParser.h" #include "dataBlockMgt.h" #include "parserInt.h" #include "parserUtil.h" #include "queryInfoUtil.h" #include "tglobal.h" #include "ttime.h" #include "ttoken.h" #include "ttypes.h" #define NEXT_TOKEN(pSql, sToken) \ do { \ int32_t index = 0; \ sToken = tStrGetToken(pSql, &index, false); \ pSql += index; \ } while (0) #define CHECK_CODE(expr) \ do { \ int32_t code = expr; \ if (TSDB_CODE_SUCCESS != code) { \ terrno = code; \ return terrno; \ } \ } while (0) #define CHECK_CODE_1(expr, destroy) \ do { \ int32_t code = expr; \ if (TSDB_CODE_SUCCESS != code) { \ (void)destroy; \ terrno = code; \ return terrno; \ } \ } while (0) #define CHECK_CODE_2(expr, destroy1, destroy2) \ do { \ int32_t code = expr; \ if (TSDB_CODE_SUCCESS != code) { \ (void)destroy1; \ (void)destroy2; \ terrno = code; \ return terrno; \ } \ } while (0) enum { TSDB_USE_SERVER_TS = 0, TSDB_USE_CLI_TS = 1, }; typedef struct SInsertParseContext { SParseContext* pComCxt; const char* pSql; SMsgBuf msg; struct SCatalog* pCatalog; STableMeta* pTableMeta; SHashObj* pTableBlockHashObj; // data block for each table. need release int32_t totalNum; SInsertStmtInfo* pOutput; } SInsertParseContext; static uint8_t TRUE_VALUE = (uint8_t)TSDB_TRUE; static uint8_t FALSE_VALUE = (uint8_t)TSDB_FALSE; static bool isNullStr(SToken *pToken) { return (pToken->type == TK_NULL) || ((pToken->type == TK_STRING) && (pToken->n != 0) && (strncasecmp(TSDB_DATA_NULL_STR_L, pToken->z, pToken->n) == 0)); } static FORCE_INLINE int32_t toDouble(SToken *pToken, double *value, char **endPtr) { errno = 0; *value = strtold(pToken->z, endPtr); // not a valid integer number, return error if ((*endPtr - pToken->z) != pToken->n) { return TK_ILLEGAL; } return pToken->type; } static int32_t toInt64(const char* z, int16_t type, int32_t n, int64_t* value, bool issigned) { errno = 0; int32_t ret = 0; char* endPtr = NULL; if (type == TK_FLOAT) { double v = strtod(z, &endPtr); if ((errno == ERANGE && v == HUGE_VALF) || isinf(v) || isnan(v)) { ret = -1; } else if ((issigned && (v < INT64_MIN || v > INT64_MAX)) || ((!issigned) && (v < 0 || v > UINT64_MAX))) { ret = -1; } else { *value = (int64_t) round(v); } errno = 0; return ret; } int32_t radix = 10; if (type == TK_HEX) { radix = 16; } else if (type == TK_BIN) { radix = 2; } // the string may be overflow according to errno if (!issigned) { const char *p = z; while(*p != 0 && *p == ' ') p++; if (*p != 0 && *p == '-') { return -1;} *value = strtoull(z, &endPtr, radix); } else { *value = strtoll(z, &endPtr, radix); } // not a valid integer number, return error if (endPtr - z != n || errno == ERANGE) { ret = -1; } errno = 0; return ret; } static int32_t createInsertStmtInfo(SInsertStmtInfo **pInsertInfo) { *pInsertInfo = calloc(1, sizeof(SQueryStmtInfo)); if (NULL == *pInsertInfo) { return TSDB_CODE_TSC_OUT_OF_MEMORY; } return TSDB_CODE_SUCCESS; } static int32_t skipInsertInto(SInsertParseContext* pCxt) { SToken sToken; NEXT_TOKEN(pCxt->pSql, sToken); if (TK_INSERT != sToken.type) { return buildSyntaxErrMsg(&pCxt->msg, "keyword INSERT is expected", sToken.z); } NEXT_TOKEN(pCxt->pSql, sToken); if (TK_INTO != sToken.type) { return buildSyntaxErrMsg(&pCxt->msg, "keyword INTO is expected", sToken.z); } return TSDB_CODE_SUCCESS; } static int32_t buildName(SInsertParseContext* pCxt, SToken* pStname, char* fullDbName, char* tableName) { if (parserValidateIdToken(pStname) != TSDB_CODE_SUCCESS) { return buildSyntaxErrMsg(&pCxt->msg, "invalid table name", pStname->z); } char* p = strnchr(pStname->z, TS_PATH_DELIMITER[0], pStname->n, false); if (NULL != p) { // db.table strcpy(fullDbName, pCxt->pComCxt->pAcctId); fullDbName[strlen(pCxt->pComCxt->pAcctId)] = TS_PATH_DELIMITER[0]; strncpy(fullDbName, pStname->z, p - pStname->z); strncpy(tableName, p + 1, pStname->n - (p - pStname->z) - 1); } else { snprintf(fullDbName, TSDB_FULL_DB_NAME_LEN, "%s.%s", pCxt->pComCxt->pAcctId, pCxt->pComCxt->pDbname); strncpy(tableName, pStname->z, pStname->n); } return TSDB_CODE_SUCCESS; } static int32_t getTableMeta(SInsertParseContext* pCxt, SToken* pTname) { char fullDbName[TSDB_FULL_DB_NAME_LEN] = {0}; char tableName[TSDB_TABLE_NAME_LEN] = {0}; CHECK_CODE(buildName(pCxt, pTname, fullDbName, tableName)); CHECK_CODE(catalogGetTableMeta(pCxt->pCatalog, pCxt->pComCxt->pRpc, pCxt->pComCxt->pEpSet, fullDbName, tableName, &pCxt->pTableMeta)); return TSDB_CODE_SUCCESS; } // todo speedup by using hash list static int32_t findCol(SToken* pColname, int32_t start, int32_t end, SSchema* pSchema) { while (start < end) { if (strlen(pSchema[start].name) == pColname->n && strncmp(pColname->z, pSchema[start].name, pColname->n) == 0) { return start; } ++start; } return -1; } static int32_t checkTimestamp(STableDataBlocks *pDataBlocks, const char *start) { // once the data block is disordered, we do NOT keep previous timestamp any more if (!pDataBlocks->ordered) { return TSDB_CODE_SUCCESS; } TSKEY k = *(TSKEY *)start; if (k == INT64_MIN) { if (pDataBlocks->tsSource == TSDB_USE_CLI_TS) { return -1; } else if (pDataBlocks->tsSource == -1) { pDataBlocks->tsSource = TSDB_USE_SERVER_TS; } } else { if (pDataBlocks->tsSource == TSDB_USE_SERVER_TS) { return -1; // client time/server time can not be mixed } else if (pDataBlocks->tsSource == -1) { pDataBlocks->tsSource = TSDB_USE_CLI_TS; } } if (k <= pDataBlocks->prevTS && (pDataBlocks->tsSource == TSDB_USE_CLI_TS)) { pDataBlocks->ordered = false; } pDataBlocks->prevTS = k; return TSDB_CODE_SUCCESS; } static int parseTime(SInsertParseContext* pCxt, SToken *pToken, int16_t timePrec, int64_t *time) { int32_t index = 0; SToken sToken; int64_t interval; int64_t useconds = 0; const char* pTokenEnd = pCxt->pSql; if (pToken->type == TK_NOW) { useconds = taosGetTimestamp(timePrec); } else if (strncmp(pToken->z, "0", 1) == 0 && pToken->n == 1) { // do nothing } else if (pToken->type == TK_INTEGER) { useconds = taosStr2int64(pToken->z); } else { // strptime("2001-11-12 18:31:01", "%Y-%m-%d %H:%M:%S", &tm); if (taosParseTime(pToken->z, time, pToken->n, timePrec, tsDaylight) != TSDB_CODE_SUCCESS) { return buildSyntaxErrMsg(&pCxt->msg, "invalid timestamp format", pToken->z); } return TSDB_CODE_SUCCESS; } for (int k = pToken->n; pToken->z[k] != '\0'; k++) { if (pToken->z[k] == ' ' || pToken->z[k] == '\t') continue; if (pToken->z[k] == ',') { pCxt->pSql = pTokenEnd; *time = useconds; return 0; } break; } /* * time expression: * e.g., now+12a, now-5h */ SToken valueToken; index = 0; sToken = tStrGetToken(pTokenEnd, &index, false); pTokenEnd += index; if (sToken.type == TK_MINUS || sToken.type == TK_PLUS) { index = 0; valueToken = tStrGetToken(pTokenEnd, &index, false); pTokenEnd += index; if (valueToken.n < 2) { return buildSyntaxErrMsg(&pCxt->msg, "value expected in timestamp", sToken.z); } char unit = 0; if (parseAbsoluteDuration(valueToken.z, valueToken.n, &interval, &unit, timePrec) != TSDB_CODE_SUCCESS) { return TSDB_CODE_TSC_INVALID_OPERATION; } if (sToken.type == TK_PLUS) { useconds += interval; } else { useconds = useconds - interval; } pCxt->pSql = pTokenEnd; } *time = useconds; return TSDB_CODE_SUCCESS; } typedef int32_t (*FRowAppend)(const void *value, int32_t len, void *param); typedef struct SKvParam { char buf[TSDB_MAX_TAGS_LEN]; SKVRowBuilder* builder; SSchema* schema; } SKvParam; static FORCE_INLINE int32_t KvRowAppend(const void *value, int32_t len, void *param) { SKvParam* pa = (SKvParam*)param; if (TSDB_DATA_TYPE_BINARY == pa->schema->type) { STR_WITH_SIZE_TO_VARSTR(pa->buf, value, len); tdAddColToKVRow(pa->builder, pa->schema->colId, pa->schema->type, pa->buf); } else if (TSDB_DATA_TYPE_NCHAR == pa->schema->type) { // if the converted output len is over than pColumnModel->bytes, return error: 'Argument list too long' int32_t output = 0; if (!taosMbsToUcs4(value, len, varDataVal(pa->buf), pa->schema->bytes - VARSTR_HEADER_SIZE, &output)) { return TSDB_CODE_TSC_SQL_SYNTAX_ERROR; } varDataSetLen(pa->buf, output); tdAddColToKVRow(pa->builder, pa->schema->colId, pa->schema->type, pa->buf); } else { tdAddColToKVRow(pa->builder, pa->schema->colId, pa->schema->type, value); } return TSDB_CODE_SUCCESS; } typedef struct SMemParam { SMemRow row; SSchema* schema; int32_t toffset; uint8_t compareStat; int32_t dataLen; int32_t kvLen; } SMemParam; static FORCE_INLINE int32_t MemRowAppend(const void *value, int32_t len, void *param) { SMemParam* pa = (SMemParam*)param; if (TSDB_DATA_TYPE_BINARY == pa->schema->type) { char *rowEnd = memRowEnd(pa->row); STR_WITH_SIZE_TO_VARSTR(rowEnd, value, len); appendMemRowColValEx(pa->row, rowEnd, true, pa->schema->colId, pa->schema->type, pa->toffset, &pa->dataLen, &pa->kvLen, pa->compareStat); } else if (TSDB_DATA_TYPE_NCHAR == pa->schema->type) { // if the converted output len is over than pColumnModel->bytes, return error: 'Argument list too long' int32_t output = 0; char * rowEnd = memRowEnd(pa->row); if (!taosMbsToUcs4(value, len, (char *)varDataVal(rowEnd), pa->schema->bytes - VARSTR_HEADER_SIZE, &output)) { return TSDB_CODE_TSC_SQL_SYNTAX_ERROR; } varDataSetLen(rowEnd, output); appendMemRowColValEx(pa->row, rowEnd, false, pa->schema->colId, pa->schema->type, pa->toffset, &pa->dataLen, &pa->kvLen, pa->compareStat); } else { appendMemRowColValEx(pa->row, value, true, pa->schema->colId, pa->schema->type, pa->toffset, &pa->dataLen, &pa->kvLen, pa->compareStat); } return TSDB_CODE_SUCCESS; } static FORCE_INLINE int32_t checkAndTrimValue(SInsertParseContext* pCxt, SToken* pToken, SSchema* pSchema, char* tmpTokenBuf) { int16_t type = pToken->type; if ((type != TK_NOW && type != TK_INTEGER && type != TK_STRING && type != TK_FLOAT && type != TK_BOOL && type != TK_NULL && type != TK_HEX && type != TK_OCT && type != TK_BIN) || (pToken->n == 0) || (type == TK_RP)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid data or symbol", pToken->z); } if (IS_NUMERIC_TYPE(pSchema->type) && pToken->n == 0) { return buildSyntaxErrMsg(&pCxt->msg, "invalid numeric data", pToken->z); } // Remove quotation marks if (TK_STRING == type) { if (pToken->n >= TSDB_MAX_BYTES_PER_ROW) { return buildSyntaxErrMsg(&pCxt->msg, "too long string", pToken->z); } // delete escape character: \\, \', \" char delim = pToken->z[0]; int32_t cnt = 0; int32_t j = 0; for (uint32_t k = 1; k < pToken->n - 1; ++k) { if (pToken->z[k] == '\\' || (pToken->z[k] == delim && pToken->z[k + 1] == delim)) { tmpTokenBuf[j] = pToken->z[k + 1]; cnt++; j++; k++; continue; } tmpTokenBuf[j] = pToken->z[k]; j++; } tmpTokenBuf[j] = 0; pToken->z = tmpTokenBuf; pToken->n -= 2 + cnt; } return TSDB_CODE_SUCCESS; } static FORCE_INLINE int32_t parseOneValue(SInsertParseContext* pCxt, SToken* pToken, SSchema* pSchema, int16_t timePrec, char* tmpTokenBuf, FRowAppend func, void* param) { int64_t iv; int32_t ret; char * endptr = NULL; CHECK_CODE(checkAndTrimValue(pCxt, pToken, pSchema, tmpTokenBuf)); if (isNullStr(pToken)) { if (TSDB_DATA_TYPE_TIMESTAMP == pSchema->type && PRIMARYKEY_TIMESTAMP_COL_ID == pSchema->colId) { int64_t tmpVal = 0; return func(&tmpVal, pSchema->bytes, param); } return func(getNullValue(pSchema->type), 0, param); } switch (pSchema->type) { case TSDB_DATA_TYPE_BOOL: { if ((pToken->type == TK_BOOL || pToken->type == TK_STRING) && (pToken->n != 0)) { if (strncmp(pToken->z, "true", pToken->n) == 0) { return func(&TRUE_VALUE, pSchema->bytes, param); } else if (strncmp(pToken->z, "false", pToken->n) == 0) { return func(&FALSE_VALUE, pSchema->bytes, param); } else { return buildSyntaxErrMsg(&pCxt->msg, "invalid bool data", pToken->z); } } else if (pToken->type == TK_INTEGER) { return func(((strtoll(pToken->z, NULL, 10) == 0) ? &FALSE_VALUE : &TRUE_VALUE), pSchema->bytes, param); } else if (pToken->type == TK_FLOAT) { return func(((strtod(pToken->z, NULL) == 0) ? &FALSE_VALUE : &TRUE_VALUE), pSchema->bytes, param); } else { return buildSyntaxErrMsg(&pCxt->msg, "invalid bool data", pToken->z); } break; } case TSDB_DATA_TYPE_TINYINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, true)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid tinyint data", pToken->z); } else if (!IS_VALID_TINYINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "data overflow", pToken->z); } uint8_t tmpVal = (uint8_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_UTINYINT:{ if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, false)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid unsigned tinyint data", pToken->z); } else if (!IS_VALID_UTINYINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "unsigned tinyint data overflow", pToken->z); } uint8_t tmpVal = (uint8_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_SMALLINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, true)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid smallint data", pToken->z); } else if (!IS_VALID_SMALLINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "smallint data overflow", pToken->z); } int16_t tmpVal = (int16_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_USMALLINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, false)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid unsigned smallint data", pToken->z); } else if (!IS_VALID_USMALLINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "unsigned smallint data overflow", pToken->z); } uint16_t tmpVal = (uint16_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_INT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, true)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid int data", pToken->z); } else if (!IS_VALID_INT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "int data overflow", pToken->z); } int32_t tmpVal = (int32_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_UINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, false)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid unsigned int data", pToken->z); } else if (!IS_VALID_UINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "unsigned int data overflow", pToken->z); } uint32_t tmpVal = (uint32_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_BIGINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, true)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid bigint data", pToken->z); } else if (!IS_VALID_BIGINT(iv)) { return buildSyntaxErrMsg(&pCxt->msg, "bigint data overflow", pToken->z); } return func(&iv, pSchema->bytes, param); } case TSDB_DATA_TYPE_UBIGINT: { if (TSDB_CODE_SUCCESS != toInt64(pToken->z, pToken->type, pToken->n, &iv, false)) { return buildSyntaxErrMsg(&pCxt->msg, "invalid unsigned bigint data", pToken->z); } else if (!IS_VALID_UBIGINT((uint64_t)iv)) { return buildSyntaxErrMsg(&pCxt->msg, "unsigned bigint data overflow", pToken->z); } uint64_t tmpVal = (uint64_t)iv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_FLOAT: { double dv; if (TK_ILLEGAL == toDouble(pToken, &dv, &endptr)) { return buildSyntaxErrMsg(&pCxt->msg, "illegal float data", pToken->z); } if (((dv == HUGE_VAL || dv == -HUGE_VAL) && errno == ERANGE) || dv > FLT_MAX || dv < -FLT_MAX || isinf(dv) || isnan(dv)) { return buildSyntaxErrMsg(&pCxt->msg, "illegal float data", pToken->z); } float tmpVal = (float)dv; return func(&tmpVal, pSchema->bytes, param); } case TSDB_DATA_TYPE_DOUBLE: { double dv; if (TK_ILLEGAL == toDouble(pToken, &dv, &endptr)) { return buildSyntaxErrMsg(&pCxt->msg, "illegal double data", pToken->z); } if (((dv == HUGE_VAL || dv == -HUGE_VAL) && errno == ERANGE) || isinf(dv) || isnan(dv)) { return buildSyntaxErrMsg(&pCxt->msg, "illegal double data", pToken->z); } return func(&dv, pSchema->bytes, param); } case TSDB_DATA_TYPE_BINARY: { // too long values will return invalid sql, not be truncated automatically if (pToken->n + VARSTR_HEADER_SIZE > pSchema->bytes) { // todo refactor return buildSyntaxErrMsg(&pCxt->msg, "string data overflow", pToken->z); } return func(pToken->z, pToken->n, param); } case TSDB_DATA_TYPE_NCHAR: { return func(pToken->z, pToken->n, param); } case TSDB_DATA_TYPE_TIMESTAMP: { int64_t tmpVal; if (parseTime(pCxt, pToken, timePrec, &tmpVal) != TSDB_CODE_SUCCESS) { return buildSyntaxErrMsg(&pCxt->msg, "invalid timestamp", pToken->z); } return func(&tmpVal, pSchema->bytes, param); } } return TSDB_CODE_FAILED; } // pSql -> tag1_name, ...) static int32_t parseBoundColumns(SInsertParseContext* pCxt, SParsedDataColInfo* pColList, SSchema* pSchema) { int32_t nCols = pColList->numOfCols; pColList->numOfBound = 0; memset(pColList->boundedColumns, 0, sizeof(int32_t) * nCols); for (int32_t i = 0; i < nCols; ++i) { pColList->cols[i].valStat = VAL_STAT_NONE; } SToken sToken; bool isOrdered = true; int32_t lastColIdx = -1; // last column found while (1) { NEXT_TOKEN(pCxt->pSql, sToken); if (TK_RP == sToken.type) { break; } int32_t t = lastColIdx + 1; int32_t index = findCol(&sToken, t, nCols, pSchema); if (index < 0 && t > 0) { index = findCol(&sToken, 0, t, pSchema); isOrdered = false; } if (index < 0) { return buildSyntaxErrMsg(&pCxt->msg, "invalid column/tag name", sToken.z); } if (pColList->cols[index].valStat == VAL_STAT_HAS) { return buildSyntaxErrMsg(&pCxt->msg, "duplicated column name", sToken.z); } lastColIdx = index; pColList->cols[index].valStat = VAL_STAT_HAS; pColList->boundedColumns[pColList->numOfBound] = index; ++pColList->numOfBound; } pColList->orderStatus = isOrdered ? ORDER_STATUS_ORDERED : ORDER_STATUS_DISORDERED; if (!isOrdered) { pColList->colIdxInfo = calloc(pColList->numOfBound, sizeof(SBoundIdxInfo)); if (NULL == pColList->colIdxInfo) { return TSDB_CODE_TSC_OUT_OF_MEMORY; } SBoundIdxInfo* pColIdx = pColList->colIdxInfo; for (uint16_t i = 0; i < pColList->numOfBound; ++i) { pColIdx[i].schemaColIdx = (uint16_t)pColList->boundedColumns[i]; pColIdx[i].boundIdx = i; } qsort(pColIdx, pColList->numOfBound, sizeof(SBoundIdxInfo), schemaIdxCompar); for (uint16_t i = 0; i < pColList->numOfBound; ++i) { pColIdx[i].finalIdx = i; } qsort(pColIdx, pColList->numOfBound, sizeof(SBoundIdxInfo), boundIdxCompar); } memset(&pColList->boundedColumns[pColList->numOfBound], 0, sizeof(int32_t) * (pColList->numOfCols - pColList->numOfBound)); return TSDB_CODE_SUCCESS; } // pSql -> tag1_value, ...) static int32_t parseTagsClause(SInsertParseContext* pCxt, SParsedDataColInfo* pSpd, SSchema* pTagsSchema, uint8_t precision) { SKVRowBuilder kvRowBuilder = {0}; if (tdInitKVRowBuilder(&kvRowBuilder) < 0) { destroyBoundColumnInfo(pSpd); return TSDB_CODE_TSC_OUT_OF_MEMORY; } SKvParam param = {.builder = &kvRowBuilder}; SToken sToken; char tmpTokenBuf[TSDB_MAX_BYTES_PER_ROW] = {0}; // used for deleting Escape character: \\, \', \" for (int i = 0; i < pSpd->numOfBound; ++i) { NEXT_TOKEN(pCxt->pSql, sToken); SSchema* pSchema = &pTagsSchema[pSpd->boundedColumns[i]]; param.schema = pSchema; CHECK_CODE_2(parseOneValue(pCxt, &sToken, pSchema, precision, tmpTokenBuf, KvRowAppend, ¶m), tdDestroyKVRowBuilder(&kvRowBuilder), destroyBoundColumnInfo(pSpd)); } destroyBoundColumnInfo(pSpd); SKVRow row = tdGetKVRowFromBuilder(&kvRowBuilder); tdDestroyKVRowBuilder(&kvRowBuilder); if (NULL == row) { return buildInvalidOperationMsg(&pCxt->msg, "tag value expected"); } tdSortKVRowByColIdx(row); // todo construct payload tfree(row); } // pSql -> stb_name [(tag1_name, ...)] TAGS (tag1_value, ...) static int32_t parseUsingClause(SInsertParseContext* pCxt, SToken* pTbnameToken) { SToken sToken; // pSql -> stb_name [(tag1_name, ...)] TAGS (tag1_value, ...) NEXT_TOKEN(pCxt->pSql, sToken); CHECK_CODE(getTableMeta(pCxt, &sToken)); if (TSDB_SUPER_TABLE != pCxt->pTableMeta->tableType) { return buildInvalidOperationMsg(&pCxt->msg, "create table only from super table is allowed"); } SSchema* pTagsSchema = getTableTagSchema(pCxt->pTableMeta); SParsedDataColInfo spd = {0}; setBoundColumnInfo(&spd, pTagsSchema, getNumOfTags(pCxt->pTableMeta)); // pSql -> [(tag1_name, ...)] TAGS (tag1_value, ...) NEXT_TOKEN(pCxt->pSql, sToken); if (TK_LP == sToken.type) { CHECK_CODE_1(parseBoundColumns(pCxt, &spd, pTagsSchema), destroyBoundColumnInfo(&spd)); NEXT_TOKEN(pCxt->pSql, sToken); } if (TK_TAGS != sToken.type) { return buildSyntaxErrMsg(&pCxt->msg, "TAGS is expected", sToken.z); } // pSql -> (tag1_value, ...) NEXT_TOKEN(pCxt->pSql, sToken); if (TK_LP != sToken.type) { return buildSyntaxErrMsg(&pCxt->msg, "( is expected", sToken.z); } CHECK_CODE(parseTagsClause(pCxt, &spd, pTagsSchema, getTableInfo(pCxt->pTableMeta).precision)); return TSDB_CODE_SUCCESS; } static int parseOneRow(SInsertParseContext* pCxt, STableDataBlocks* pDataBlocks, int16_t timePrec, int32_t* len, char* tmpTokenBuf) { SParsedDataColInfo* spd = &pDataBlocks->boundColumnInfo; SMemRowBuilder* pBuilder = &pDataBlocks->rowBuilder; char *row = pDataBlocks->pData + pDataBlocks->size; // skip the SSubmitBlk header initSMemRow(row, pBuilder->memRowType, pDataBlocks, spd->numOfBound); bool isParseBindParam = false; SSchema* schema = getTableColumnSchema(pDataBlocks->pTableMeta); SMemParam param = {.row = row}; SToken sToken = {0}; // 1. set the parsed value from sql string for (int i = 0; i < spd->numOfBound; ++i) { NEXT_TOKEN(pCxt->pSql, sToken); SSchema *pSchema = &schema[spd->boundedColumns[i]]; param.schema = pSchema; param.compareStat = pBuilder->compareStat; getMemRowAppendInfo(schema, pBuilder->memRowType, spd, i, ¶m.toffset); CHECK_CODE(parseOneValue(pCxt, &sToken, pSchema, timePrec, tmpTokenBuf, MemRowAppend, ¶m)); if (PRIMARYKEY_TIMESTAMP_COL_ID == pSchema->colId) { TSKEY tsKey = memRowKey(row); if (checkTimestamp(pDataBlocks, (const char *)&tsKey) != TSDB_CODE_SUCCESS) { buildSyntaxErrMsg(&pCxt->msg, "client time/server time can not be mixed up", sToken.z); return TSDB_CODE_TSC_INVALID_TIME_STAMP; } } } if (!isParseBindParam) { // 2. check and set convert flag if (pBuilder->compareStat == ROW_COMPARE_NEED) { convertMemRow(row, spd->allNullLen + TD_MEM_ROW_DATA_HEAD_SIZE, pBuilder->kvRowInitLen); } // 3. set the null value for the columns that do not assign values if ((spd->numOfBound < spd->numOfCols) && isDataRow(row) && !isNeedConvertRow(row)) { SDataRow dataRow = memRowDataBody(row); for (int32_t i = 0; i < spd->numOfCols; ++i) { if (spd->cols[i].valStat == VAL_STAT_NONE) { tdAppendDataColVal(dataRow, getNullValue(schema[i].type), true, schema[i].type, spd->cols[i].toffset); } } } } *len = getExtendedRowSize(pDataBlocks); return TSDB_CODE_SUCCESS; } // pSql -> (field1_value, ...) [(field1_value2, ...) ...] static int32_t parseValues(SInsertParseContext* pCxt, STableDataBlocks* pDataBlock, int maxRows, int32_t* numOfRows) { STableComInfo tinfo = getTableInfo(pDataBlock->pTableMeta); int32_t extendedRowSize = getExtendedRowSize(pDataBlock); CHECK_CODE(initMemRowBuilder(&pDataBlock->rowBuilder, 0, tinfo.numOfColumns, pDataBlock->boundColumnInfo.numOfBound, pDataBlock->boundColumnInfo.allNullLen)); (*numOfRows) = 0; char tmpTokenBuf[TSDB_MAX_BYTES_PER_ROW] = {0}; // used for deleting Escape character: \\, \', \" SToken sToken; while (1) { NEXT_TOKEN(pCxt->pSql, sToken); if (TK_LP != sToken.type) { break; } if ((*numOfRows) >= maxRows || pDataBlock->size + extendedRowSize >= pDataBlock->nAllocSize) { int32_t tSize; CHECK_CODE(allocateMemIfNeed(pDataBlock, extendedRowSize, &tSize)); ASSERT(tSize >= maxRows); maxRows = tSize; } int32_t len = 0; CHECK_CODE(parseOneRow(pCxt, pDataBlock, tinfo.precision, &len, tmpTokenBuf)); pDataBlock->size += len; NEXT_TOKEN(pCxt->pSql, sToken); if (TK_RP != sToken.type) { return buildSyntaxErrMsg(&pCxt->msg, ") expected", sToken.z); } (*numOfRows)++; } if (0 == (*numOfRows)) { return buildSyntaxErrMsg(&pCxt->msg, "no any data points", NULL); } return TSDB_CODE_SUCCESS; } static int32_t parseValuesClause(SInsertParseContext* pCxt, STableDataBlocks* dataBuf) { int32_t maxNumOfRows; CHECK_CODE(allocateMemIfNeed(dataBuf, getExtendedRowSize(dataBuf), &maxNumOfRows)); int32_t numOfRows = 0; CHECK_CODE(parseValues(pCxt, dataBuf, maxNumOfRows, &numOfRows)); SSubmitBlk *pBlocks = (SSubmitBlk *)(dataBuf->pData); if (TSDB_CODE_SUCCESS != setBlockInfo(pBlocks, dataBuf->pTableMeta, numOfRows)) { return buildInvalidOperationMsg(&pCxt->msg, "too many rows in sql, total number of rows should be less than 32767"); } dataBuf->numOfTables = 1; pCxt->totalNum += numOfRows; return TSDB_CODE_SUCCESS; } // tb_name // [USING stb_name [(tag1_name, ...)] TAGS (tag1_value, ...)] // [(field1_name, ...)] // VALUES (field1_value, ...) [(field1_value2, ...) ...] | FILE csv_file_path // [...]; static int32_t parseInsertBody(SInsertParseContext* pCxt) { while (1) { SToken sToken; // pSql -> tb_name ... NEXT_TOKEN(pCxt->pSql, sToken); // no data in the sql string anymore. if (sToken.n == 0) { if (0 == pCxt->totalNum) { return buildInvalidOperationMsg(&pCxt->msg, "no data in sql");; } break; } SToken tbnameToken = sToken; NEXT_TOKEN(pCxt->pSql, sToken); // USING cluase if (TK_USING == sToken.type) { CHECK_CODE(parseUsingClause(pCxt, &tbnameToken)); NEXT_TOKEN(pCxt->pSql, sToken); } else { CHECK_CODE(getTableMeta(pCxt, &tbnameToken)); } STableDataBlocks *dataBuf = NULL; CHECK_CODE(getDataBlockFromList(pCxt->pTableBlockHashObj, pCxt->pTableMeta->uid, TSDB_DEFAULT_PAYLOAD_SIZE, sizeof(SSubmitBlk), getTableInfo(pCxt->pTableMeta).rowSize, pCxt->pTableMeta, &dataBuf, NULL)); if (TK_LP == sToken.type) { // pSql -> field1_name, ...) CHECK_CODE_1(parseBoundColumns(pCxt, &dataBuf->boundColumnInfo, getTableColumnSchema(pCxt->pTableMeta)), destroyBoundColumnInfo(&dataBuf->boundColumnInfo)); NEXT_TOKEN(pCxt->pSql, sToken); } if (TK_VALUES == sToken.type) { // pSql -> (field1_value, ...) [(field1_value2, ...) ...] CHECK_CODE(parseValuesClause(pCxt, dataBuf)); pCxt->pOutput->insertType = TSDB_QUERY_TYPE_INSERT; continue; } // FILE csv_file_path if (TK_FILE == sToken.type) { // pSql -> csv_file_path NEXT_TOKEN(pCxt->pSql, sToken); if (0 == sToken.n || (TK_STRING != sToken.type && TK_ID != sToken.type)) { return buildSyntaxErrMsg(&pCxt->msg, "file path is required following keyword FILE", sToken.z); } // todo pCxt->pOutput->insertType = TSDB_QUERY_TYPE_FILE_INSERT; continue; } return buildSyntaxErrMsg(&pCxt->msg, "keyword VALUES or FILE is expected", sToken.z); } // merge according to vgId if (!TSDB_QUERY_HAS_TYPE(pCxt->pOutput->insertType, TSDB_QUERY_TYPE_STMT_INSERT) && taosHashGetSize(pCxt->pTableBlockHashObj) > 0) { CHECK_CODE(mergeTableDataBlocks(pCxt->pTableBlockHashObj, pCxt->pOutput->schemaAttache, pCxt->pOutput->payloadType, true)); } return TSDB_CODE_SUCCESS; } // INSERT INTO // tb_name // [USING stb_name [(tag1_name, ...)] TAGS (tag1_value, ...)] // [(field1_name, ...)] // VALUES (field1_value, ...) [(field1_value2, ...) ...] | FILE csv_file_path // [...]; int32_t parseInsertSql(SParseContext* pContext, SInsertStmtInfo** pInfo) { CHECK_CODE(createInsertStmtInfo(pInfo)); SInsertParseContext context = { .pComCxt = pContext, .pSql = pContext->pSql, .msg = {.buf = pContext->pMsg, .len = pContext->msgLen}, .pCatalog = NULL, .pTableMeta = NULL, .pTableBlockHashObj = taosHashInit(128, taosGetDefaultHashFunction(TSDB_DATA_TYPE_BIGINT), true, false), .totalNum = 0, .pOutput = *pInfo }; if (NULL == context.pTableBlockHashObj) { return TSDB_CODE_TSC_OUT_OF_MEMORY; } CHECK_CODE(catalogGetHandle(pContext->pClusterId, &context.pCatalog)); CHECK_CODE(skipInsertInto(&context)); CHECK_CODE(parseInsertBody(&context)); return TSDB_CODE_SUCCESS; }